Suppr超能文献

导致新冠病毒传播率高或低的可解释特征:以非洲为例

Explainable features responsible for the high or low spread of SARS-CoV-2: Africa in view.

作者信息

Akintande Olalekan J, Olubusoye Olusanya E, Yaya OlaOluwa S, Abiodun Adeyinka O

机构信息

Department of Statistics, Laboratory for Interdisciplinary Statistical Analysis, Computational Unit, University of Ibadan, Nigeria.

Africa Center of Excellence on Technology Enhanced Learning, National Open University of Nigeria, Nigeria.

出版信息

Sci Afr. 2022 Sep;17:e01301. doi: 10.1016/j.sciaf.2022.e01301. Epub 2022 Jul 28.

Abstract

The low spread of the global pandemic in Africa has raised concerns. Consequently, many commentators have misconstrued concerns suspecting weather, and immunity to be prime reasons. This study investigates the factors associated with the high and low spread of the SARS-CoV-2 (also known as COVID-19) and employs graphical Bayesian models to investigate feature interactions and causality. Through experimentation with the Bayesian framework, we propose that: (i) the proportion of people within the country population who test positive for SARS-CoV-2 and a country's test capacity cause the rate of spread of the virus [i.e., P(S|P) and P(S|T)] (ii) poverty gaps, welfare and freedom of the press directly cause the spread of the virus [i.e., P(S|E), P(S|W), and P(S|R)] (iii) Government effectiveness serves as a parent to poverty gaps and welfare [ i.e., P(E|G) and P(W|G)] and voice and accountability serve as a parent to freedom of the press [i.e., P(R|V)]. For the output, we "dichotomized" regions based on the "share of global infection rate" metric (SGIR) that implicitly accounts for a given region's population, and we find that - out of two hundred and nineteen countries investigated, one hundred and twenty-seven have SGIR ≥ 1%, and the majority (44 out 58 - 75.86%) of Africa countries (as of 12 February 2021) have SGIR  1%. With Africa in the mirror, the study shows that only 2.2% of the Africa population has been tested for SARS-CoV-2 and finds that the low proportion of population tested [i.e., P(S|P)] for SARS-CoV-2 is the cause of the low spread (i.e., cases reported) of SARS-CoV-2 in Africa. Similarly, the fragmented socioeconomic statuses [i.e., P(S|E)] among citizens leads to socioeconomic distancing, causing socio-class gaps between the rich and poor/average citizens, ensuring low interaction in social space, thus limiting the spread.

摘要

全球疫情在非洲的低传播率引发了人们的担忧。因此,许多评论家误解了这些担忧,怀疑天气和免疫力是主要原因。本研究调查了与严重急性呼吸综合征冠状病毒2(SARS-CoV-2,也称为新冠病毒)高传播率和低传播率相关的因素,并采用图形贝叶斯模型来研究特征相互作用和因果关系。通过贝叶斯框架实验,我们提出:(i)一个国家人口中SARS-CoV-2检测呈阳性的人口比例以及该国的检测能力导致了病毒的传播速度[即P(S|P)和P(S|T)];(ii)贫富差距、福利和新闻自由直接导致病毒传播[即P(S|E)、P(S|W)和P(S|R)];(iii)政府效能是贫富差距和福利的根源[即P(E|G)和P(W|G)],而发言权和问责制是新闻自由的根源[即P(R|V)]。对于输出结果,我们根据隐含考虑给定地区人口的“全球感染率份额”指标(SGIR)对地区进行了“二分法”划分,我们发现——在调查的219个国家中,127个国家的SGIR≥1%,而非洲国家中的大多数(58个国家中的44个——75.86%,截至2021年2月12日)的SGIR<1%。以非洲为鉴,该研究表明,只有2.2%的非洲人口接受了SARS-CoV-2检测,并发现接受SARS-CoV-检测的人口比例较低[即P(S|P)]是SARS-CoV-2在非洲低传播率(即报告病例数)的原因。同样,公民之间分散的社会经济状况[即P(S|E)]导致了社会经济距离,造成了富人与穷人/普通公民之间的社会阶层差距,确保了社会空间中的低互动,从而限制了传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd2/9330361/f78188df3884/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验