Suppr超能文献

血小板启发式静脉内纳米医学用于损伤靶向性直接递血栓酶以增强凝血异常中的止血作用。

Platelet-Inspired Intravenous Nanomedicine for Injury-Targeted Direct Delivery of Thrombin to Augment Hemostasis in Coagulopathies.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.

Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15123, United States.

出版信息

ACS Nano. 2022 Oct 25;16(10):16292-16313. doi: 10.1021/acsnano.2c05306. Epub 2022 Aug 2.

Abstract

Severe hemorrhage associated with trauma, surgery, and congenital or drug-induced coagulopathies can be life-threatening and requires rapid hemostatic management via topical, intracavitary, or intravenous routes. For injuries that are not easily accessible externally, hemostatic approaches are needed. The clinical gold standard for this is transfusion of blood products, but due to donor dependence, specialized storage requirements, high risk of contamination, and short shelf life, blood product use faces significant challenges. Consequently, recent research efforts are being focused on designing intravenous hemostats, using intravenous nanoparticles and polymer systems. Here we report on the design and evaluation of thrombin-loaded injury-site-targeted lipid nanoparticles (t-TLNPs) that can specifically localize at an injury site via platelet-mimetic anchorage to the von Willebrand factor (vWF) and collagen and directly release thrombin via diffusion and phospholipase-triggered particle destabilization, which can locally augment fibrin generation from fibrinogen for hemostatic action. We evaluated t-TLNPs in human blood and plasma, where hemostatic defects were created by platelet depletion and anticoagulation. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM)-based studies of clot viscoelasticity, and BioFlux-based real-time imaging of fibrin generation under simulated vascular flow conditions confirmed that t-TLNPs can restore fibrin in hemostatic dysfunction settings. Finally, the feasibility of t-TLNPs was tested by administration in a tail-clip model and administration in a liver-laceration model in mice with induced hemostatic defects. Treatment with t-TLNPs was able to significantly reduce bleeding in both models. Our studies demonstrate an intravenous nanomedicine approach for injury-site-targeted direct delivery of thrombin to augment hemostasis.

摘要

严重出血与创伤、手术以及先天性或药物诱导的凝血功能障碍有关,可能危及生命,需要通过局部、腔内置入或静脉途径进行快速止血管理。对于不易从外部触及的损伤,需要采用止血方法。目前,这种方法的临床金标准是输血制品,但由于供体依赖性、特殊储存要求、高污染风险和短保质期,血液制品的使用面临重大挑战。因此,最近的研究工作集中在设计静脉内止血剂,使用静脉内纳米粒子和聚合物系统。在这里,我们报告了载血栓酶的损伤部位靶向脂质纳米粒(t-TLNPs)的设计和评估,该纳米粒可以通过血小板模拟锚定到血管性血友病因子(vWF)和胶原蛋白,特异性地定位于损伤部位,并通过扩散和磷脂酶触发的颗粒不稳定直接释放血栓酶,从而局部增加纤维蛋白原生成纤维蛋白以发挥止血作用。我们在人血液和血浆中评估了 t-TLNPs,在这些体系中,通过血小板耗竭和抗凝作用造成止血缺陷。纤维蛋白生成的分光光度研究、基于旋转血栓弹性计(ROTEM)的血凝块粘弹性研究以及在模拟血管流动条件下基于 BioFlux 的纤维蛋白生成实时成像证实,t-TLNPs 可以恢复止血功能障碍环境中的纤维蛋白。最后,通过在血小板耗竭和抗凝诱导的止血缺陷的小鼠的尾夹模型和肝切开模型中进行给药,测试了 t-TLNPs 的可行性。t-TLNPs 治疗能够显著减少两种模型中的出血。我们的研究表明了一种静脉内纳米医学方法,用于损伤部位靶向直接递送电血栓酶以增强止血作用。

相似文献

1
Platelet-Inspired Intravenous Nanomedicine for Injury-Targeted Direct Delivery of Thrombin to Augment Hemostasis in Coagulopathies.
ACS Nano. 2022 Oct 25;16(10):16292-16313. doi: 10.1021/acsnano.2c05306. Epub 2022 Aug 2.
3
Flow and delta-P dictate where thrombin, fibrin, and von Willebrand Factor will be found.
Thromb Res. 2016 May;141 Suppl 2:S22-4. doi: 10.1016/S0049-3848(16)30357-7.
5
Transport physics and biorheology in the setting of hemostasis and thrombosis.
J Thromb Haemost. 2016 May;14(5):906-17. doi: 10.1111/jth.13280. Epub 2016 Mar 30.
6
Potential role of recombinant factor VIIa as a hemostatic agent.
Clin Adv Hematol Oncol. 2003 Feb;1(2):112-9.
7
Synthetic Strategies for Engineering Intravenous Hemostats.
Bioconjug Chem. 2015 Jul 15;26(7):1224-36. doi: 10.1021/acs.bioconjchem.5b00070. Epub 2015 Apr 6.
8
Hemostatic efficacy of two topical adjunctive hemostats in a porcine spleen biopsy punch model of moderate bleeding.
J Mater Sci Mater Med. 2021 Sep 30;32(10):127. doi: 10.1007/s10856-021-06586-8.
9
Fibrin, γ'-fibrinogen, and transclot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound.
Arterioscler Thromb Vasc Biol. 2015 Mar;35(3):645-54. doi: 10.1161/ATVBAHA.114.305054. Epub 2015 Jan 22.

引用本文的文献

1
Multiscale physics-based modelling of nanocarrier-assisted intravascular drug delivery.
Front Drug Deliv. 2024 Mar 4;4:1362660. doi: 10.3389/fddev.2024.1362660. eCollection 2024.
3
Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control.
J Funct Biomater. 2025 Mar 3;16(3):86. doi: 10.3390/jfb16030086.
4
Bioactive hemostatic materials: a new strategy for promoting wound healing and tissue regeneration.
MedComm (2020). 2025 Mar 22;6(4):e70113. doi: 10.1002/mco2.70113. eCollection 2025 Apr.
5
OPSALC: On-Particle Solvent-Assisted Lipid Coating to Create Erythrocyte Membrane-like Coatings with Improved Hemocompatibility.
ACS Appl Mater Interfaces. 2025 Mar 26;17(12):18179-18193. doi: 10.1021/acsami.5c02103. Epub 2025 Mar 13.
6
Liposomal factor VIII as an efficient pharmaceutical system for the treatment of hemophilia.
Iran J Basic Med Sci. 2024;27(6):747-754. doi: 10.22038/IJBMS.2024.74673.16214.
8
Long wavelength light exposure reduces systemic inflammation coagulopathy and acute organ injury following multiple injuries in mice.
J Trauma Acute Care Surg. 2024 Jun 1;96(6):901-908. doi: 10.1097/TA.0000000000004234. Epub 2023 Dec 8.
9
Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models.
MedComm (2020). 2023 Jul 14;4(4):e327. doi: 10.1002/mco2.327. eCollection 2023 Aug.
10
ENGINEERED INTRAVENOUS THERAPIES FOR TRAUMA.
Curr Opin Biomed Eng. 2023 Sep;27. doi: 10.1016/j.cobme.2023.100456. Epub 2023 Mar 23.

本文引用的文献

2
Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light.
Sci Adv. 2021 Jul 14;7(29). doi: 10.1126/sciadv.abf9635. Print 2021 Jul.
3
Trauma-induced coagulopathy.
Nat Rev Dis Primers. 2021 Apr 29;7(1):30. doi: 10.1038/s41572-021-00264-3.
4
Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis.
Int J Mol Sci. 2021 Mar 4;22(5):2590. doi: 10.3390/ijms22052590.
6
Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine.
Front Immunol. 2021 Jan 8;11:603039. doi: 10.3389/fimmu.2020.603039. eCollection 2020.
7
Systemically Administered Hemostatic Nanoparticles for Identification and Treatment of Internal Bleeding.
ACS Biomater Sci Eng. 2019 May 13;5(5):2563-2576. doi: 10.1021/acsbiomaterials.9b00054. Epub 2019 May 2.
8
Multifunctional Tissue-Adhesive Cryogel Wound Dressing for Rapid Nonpressing Surface Hemorrhage and Wound Repair.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35856-35872. doi: 10.1021/acsami.0c08285. Epub 2020 Jul 29.
9
A polymer-based systemic hemostatic agent.
Sci Adv. 2020 Jul 31;6(31):eaba0588. doi: 10.1126/sciadv.aba0588. eCollection 2020 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验