Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.
Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15123, United States.
ACS Nano. 2022 Oct 25;16(10):16292-16313. doi: 10.1021/acsnano.2c05306. Epub 2022 Aug 2.
Severe hemorrhage associated with trauma, surgery, and congenital or drug-induced coagulopathies can be life-threatening and requires rapid hemostatic management via topical, intracavitary, or intravenous routes. For injuries that are not easily accessible externally, hemostatic approaches are needed. The clinical gold standard for this is transfusion of blood products, but due to donor dependence, specialized storage requirements, high risk of contamination, and short shelf life, blood product use faces significant challenges. Consequently, recent research efforts are being focused on designing intravenous hemostats, using intravenous nanoparticles and polymer systems. Here we report on the design and evaluation of thrombin-loaded injury-site-targeted lipid nanoparticles (t-TLNPs) that can specifically localize at an injury site via platelet-mimetic anchorage to the von Willebrand factor (vWF) and collagen and directly release thrombin via diffusion and phospholipase-triggered particle destabilization, which can locally augment fibrin generation from fibrinogen for hemostatic action. We evaluated t-TLNPs in human blood and plasma, where hemostatic defects were created by platelet depletion and anticoagulation. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM)-based studies of clot viscoelasticity, and BioFlux-based real-time imaging of fibrin generation under simulated vascular flow conditions confirmed that t-TLNPs can restore fibrin in hemostatic dysfunction settings. Finally, the feasibility of t-TLNPs was tested by administration in a tail-clip model and administration in a liver-laceration model in mice with induced hemostatic defects. Treatment with t-TLNPs was able to significantly reduce bleeding in both models. Our studies demonstrate an intravenous nanomedicine approach for injury-site-targeted direct delivery of thrombin to augment hemostasis.
严重出血与创伤、手术以及先天性或药物诱导的凝血功能障碍有关,可能危及生命,需要通过局部、腔内置入或静脉途径进行快速止血管理。对于不易从外部触及的损伤,需要采用止血方法。目前,这种方法的临床金标准是输血制品,但由于供体依赖性、特殊储存要求、高污染风险和短保质期,血液制品的使用面临重大挑战。因此,最近的研究工作集中在设计静脉内止血剂,使用静脉内纳米粒子和聚合物系统。在这里,我们报告了载血栓酶的损伤部位靶向脂质纳米粒(t-TLNPs)的设计和评估,该纳米粒可以通过血小板模拟锚定到血管性血友病因子(vWF)和胶原蛋白,特异性地定位于损伤部位,并通过扩散和磷脂酶触发的颗粒不稳定直接释放血栓酶,从而局部增加纤维蛋白原生成纤维蛋白以发挥止血作用。我们在人血液和血浆中评估了 t-TLNPs,在这些体系中,通过血小板耗竭和抗凝作用造成止血缺陷。纤维蛋白生成的分光光度研究、基于旋转血栓弹性计(ROTEM)的血凝块粘弹性研究以及在模拟血管流动条件下基于 BioFlux 的纤维蛋白生成实时成像证实,t-TLNPs 可以恢复止血功能障碍环境中的纤维蛋白。最后,通过在血小板耗竭和抗凝诱导的止血缺陷的小鼠的尾夹模型和肝切开模型中进行给药,测试了 t-TLNPs 的可行性。t-TLNPs 治疗能够显著减少两种模型中的出血。我们的研究表明了一种静脉内纳米医学方法,用于损伤部位靶向直接递送电血栓酶以增强止血作用。