Suppr超能文献

通过单面FFL磁粒子成像扫描仪对超顺磁性氧化铁纳米颗粒分布进行一维成像。

1D imaging of a superparamagnetic iron oxide nanoparticle distribution by a single-sided FFL magnetic particle imaging scanner.

作者信息

McDonough Chris, Newey David, Tonyushkin Alexey

机构信息

Physics Department, Oakland University, Rochester, MI 48309 USA.

Physics Department, University of Massachusetts Boston, Boston, MA 02125 USA.

出版信息

IEEE Trans Magn. 2022 Aug;58(8). doi: 10.1109/tmag.2022.3151710. Epub 2022 Feb 15.

Abstract

Magnetic Particle Imaging (MPI) is an emerging imaging modality that has a potential of complimenting other imaging modalities in clinical practice. Despite many efforts to scale up MPI hardware to date no MPI systems have been demonstrated to accommodate full body imaging. Previously, we introduced hardware and characterized a prototype of a single-sided MPI scanner, where all coils are confined to a single-side of the device, which provides a subject with unrestricted access to the scanning area although with a limited penetration depth. The major difference in our design from the first reported single-sided scanner is in incorporating a field-free line instead of a field-free point, which generally promises higher sensitivity and more robust image reconstruction. However, as inherent to any single-sided configurations the fields in our device are spatially inhomogeneous making it challenging to apply existing imaging techniques. For our specific geometry we implemented spatial encoding scheme and imaging in time-domain making the image reconstruction fast. In this work we present one dimensional imaging of multiple rods phantoms with a single-sided field-free line MPI scanner. The results demonstrate that our scanner is capable of one dimensional imaging of phantoms with a spatial resolution of at least 7 mm without image processing.

摘要

磁粒子成像(MPI)是一种新兴的成像方式,在临床实践中具有补充其他成像方式的潜力。尽管迄今为止人们为扩大MPI硬件规模付出了诸多努力,但尚未有MPI系统被证明能够实现全身成像。此前,我们介绍了一种硬件,并对单面MPI扫描仪的原型进行了表征,该扫描仪的所有线圈都局限于设备的一侧,这使得受试者可以不受限制地进入扫描区域,尽管穿透深度有限。我们的设计与首次报道的单面扫描仪的主要区别在于采用了无场线而非无场点,这通常意味着更高的灵敏度和更稳健的图像重建。然而,与任何单面配置一样,我们设备中的磁场在空间上是不均匀的,这使得应用现有的成像技术具有挑战性。针对我们的特定几何结构,我们实施了空间编码方案并在时域进行成像,从而实现快速的图像重建。在这项工作中,我们展示了使用单面无场线MPI扫描仪对多个棒状模型进行的一维成像。结果表明,我们的扫描仪能够对模型进行一维成像,在不进行图像处理的情况下空间分辨率至少为7毫米。

相似文献

3
Tomographic Magnetic Particle Imaging With a Single-Sided Field-Free Line Scanner.使用单侧无场线扫描仪的断层磁共振粒子成像
IEEE Trans Biomed Eng. 2024 Dec;71(12):3470-3481. doi: 10.1109/TBME.2024.3427665. Epub 2024 Nov 21.
6
Trajectory analysis for field free line magnetic particle imaging.无场线磁粒子成像的轨迹分析。
Med Phys. 2019 Apr;46(4):1592-1607. doi: 10.1002/mp.13411. Epub 2019 Feb 22.
9
2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner.用单面磁粒子成像扫描仪记录的 2D 图像。
IEEE Trans Med Imaging. 2016 Apr;35(4):1056-65. doi: 10.1109/TMI.2015.2507187. Epub 2015 Dec 17.

本文引用的文献

5
2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner.用单面磁粒子成像扫描仪记录的 2D 图像。
IEEE Trans Med Imaging. 2016 Apr;35(4):1056-65. doi: 10.1109/TMI.2015.2507187. Epub 2015 Dec 17.
6
Magnetic particle imaging: current developments and future directions.磁粒子成像:当前进展与未来方向。
Int J Nanomedicine. 2015 Apr 22;10:3097-114. doi: 10.2147/IJN.S70488. eCollection 2015.
8
Projection reconstruction magnetic particle imaging.投影重建磁粒子成像。
IEEE Trans Med Imaging. 2013 Feb;32(2):338-47. doi: 10.1109/TMI.2012.2227121. Epub 2012 Nov 15.
9
Trajectory analysis for magnetic particle imaging.用于磁粒子成像的轨迹分析。
Phys Med Biol. 2009 Jan 21;54(2):385-97. doi: 10.1088/0031-9155/54/2/014. Epub 2008 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验