Kim Sangwook, Kim Bo Ram, Chae Hee-Dong, Lee Jimin, Ye Sung-Joon, Kim Dong Hyun, Hong Sung Hwan, Choi Ja-Young, Yoo Hye Jin
Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (S.K., H.D.C., S.H.H., J.Y.C., H.J.Y.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (B.R.K.); Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea (J.L.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea (S.J.Y.); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea (D.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (S.J.Y., S.H.H., J.Y.C., H.J.Y.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.H.).
Radiol Artif Intell. 2022 May 25;4(4):e210212. doi: 10.1148/ryai.210212. eCollection 2022 Jul.
To develop and validate deep radiomics models for the diagnosis of osteoporosis using hip radiographs.
A deep radiomics model was developed using 4924 hip radiographs from 4308 patients (3632 women; mean age, 62 years ± 13 [SD]) obtained between September 2009 and April 2020. Ten deep features, 16 texture features, and three clinical features were used to train the model. T score measured with dual-energy x-ray absorptiometry was used as a reference standard for osteoporosis. Seven deep radiomics models that combined different types of features were developed: clinical (model C); texture (model T); deep (model D); texture and clinical (model TC); deep and clinical (model DC); deep and texture (model DT); and deep, texture, and clinical features (model DTC). A total of 444 hip radiographs obtained between January 2019 and April 2020 from another institution were used for the external test. Six radiologists performed an observer performance test. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic performance.
For the external test set, model D (AUC, 0.92; 95% CI: 0.89, 0.95) demonstrated higher diagnostic performance than model T (AUC, 0.77; 95% CI: 0.70, 0.83; adjusted < .001). Model DC (AUC, 0.95; 95% CI: 0.92, 0.97; adjusted = .03) and model DTC (AUC, 0.95; 95% CI: 0.92, 0.97; adjusted = .048) showed improved diagnostic performance compared with model D. When observer performance without and with the assistance of the model DTC prediction was compared, performance improved from a mean AUC of 0.77 to 0.87 ( = .002).
Deep radiomics models using hip radiographs could be used to diagnose osteoporosis with high performance. Skeletal-Appendicular, Hip, Absorptiometry/Bone Densitometry© RSNA, 2022.
开发并验证用于通过髋部X线片诊断骨质疏松症的深度放射组学模型。
利用2009年9月至2020年4月期间获取的4308例患者(3632名女性;平均年龄62岁±13[标准差])的4924张髋部X线片开发深度放射组学模型。使用10个深度特征、16个纹理特征和3个临床特征来训练该模型。采用双能X线吸收法测量的T值作为骨质疏松症的参考标准。开发了7种结合不同类型特征的深度放射组学模型:临床模型(模型C);纹理模型(模型T);深度模型(模型D);纹理与临床模型(模型TC);深度与临床模型(模型DC);深度与纹理模型(模型DT);以及深度、纹理与临床特征模型(模型DTC)。从另一家机构获取的2019年1月至2020年4月期间的444张髋部X线片用于外部测试。6名放射科医生进行了观察者性能测试。采用受试者操作特征曲线下面积(AUC)评估诊断性能。
对于外部测试集,模型D(AUC为0.92;95%可信区间:0.89,0.95)的诊断性能高于模型T(AUC为0.77;95%可信区间:0.70,0.83;校正P<0.001)。与模型D相比,模型DC(AUC为0.95;95%可信区间:0.92,0.97;校正P = 0.03)和模型DTC(AUC为0.95;95%可信区间:0.92,0.97;校正P = 0.048)的诊断性能有所提高。当比较无模型DTC预测辅助和有模型DTC预测辅助时的观察者性能时,性能从平均AUC为0.77提高到0.87(P = 0.002)。
利用髋部X线片的深度放射组学模型可用于高效诊断骨质疏松症。骨骼-附件、髋部、吸收测定法/骨密度测定法©RSNA,2022年。