Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan.
FASEB J. 2022 Sep;36(9):e22490. doi: 10.1096/fj.202101890R.
There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.
有确凿的证据表明,低功率近红外(NIR)光在 NIR-I 窗口中的光生物调节(PBM)可增加生物可利用的一氧化氮(NO)。然而,尚不确定这种效应是否可以扩展到 NIR-II 光,这限制了这种治疗模式的更广泛应用。由于我们已经证明了 NIR-II 窗口中的 NIR 激光的 PBM,因此我们确定了 NIR-II 辐照与其对 NO 生物利用度的特定生物学效应之间的因果关系。我们使用 NO 敏感荧光探针和单细胞实时成像分析了 NIR-II 辐照对培养的人内皮细胞中 NO 释放的影响。两种不同波长的 NIR-II 激光(1064 和 1270nm)和 NIR-I(808nm)在 10mW/cm2 的辐照度下诱导内皮细胞释放 NO。这些激光还增强了 Akt 在 Ser 473 处的磷酸化、内皮型一氧化氮合酶(eNOS)在 Ser 1177 处的磷酸化以及内皮细胞迁移。此外,通过抑制线粒体呼吸,NO 释放和 eNOS 的磷酸化被消除,这表明 NIR-II 激光暴露引起的 Akt 激活涉及线粒体逆行信号。抑制已知 Akt 激活途径的其他抑制剂,包括 PI3K 的特异性抑制剂、Src 家族 PKC,不影响此反应。这两种 NIR-II 激光在表达神经元型一氧化氮合酶(nNOS)的培养神经元细胞中没有引起明显的 NO 生成。简而言之,NIR-II 激光可增强内皮细胞中的生物可利用的 NO。由于内皮功能障碍的一个标志是伴随 NO 缺乏的抑制性 eNOS,因此 NIR-II 激光技术可广泛用于恢复内皮 NO 并治疗或预防心血管疾病。