Suppr超能文献

USP22 通过激活 STING 控制 III 型干扰素信号和 SARS-CoV-2 感染。

USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING.

机构信息

Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.

Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120, Heidelberg, Germany.

出版信息

Cell Death Dis. 2022 Aug 6;13(8):684. doi: 10.1038/s41419-022-05124-w.

Abstract

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.

摘要

模式识别受体(PRRs)和干扰素(IFNs)是对抗 SARS-CoV-2 的重要抗病毒防御机制,SARS-CoV-2 是 COVID-19 大流行的病原体。III 型干扰素(IFN-λ)在自身炎症、肿瘤发生和抗病毒防御中具有细胞类型特异性和持久功能。在这里,我们确定去泛素化酶 USP22 是人类肠道上皮细胞(hIECs)中基础 IFN-λ 分泌和 SARS-CoV-2 感染的中央调节因子。USP22 缺陷的 hIECs 强烈地上调参与 IFN 信号和病毒防御的基因,包括许多 IFN 刺激基因(ISGs),IFN-λ 的分泌增加,STAT1 信号增强,即使在没有外源性 IFN 或病毒感染的情况下也是如此。有趣的是,USP22 控制基础和 2'3'-cGAMP 诱导的 STING 激活,而 STING 的缺失逆转了 STAT 激活和 ISG 和 IFN-λ 的表达。有趣的是,USP22 缺陷的 hIECs 以 STING 依赖的方式免受 SARS-CoV-2 感染、病毒复制和新形成的感染性颗粒的影响。这些发现揭示了 USP22 是 STING 和 III 型 IFN 信号的中央宿主调节剂,对 SARS-CoV-2 感染和抗病毒防御具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54e/9357023/78858f4925e1/41419_2022_5124_Fig1_HTML.jpg

相似文献

1
USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING.
Cell Death Dis. 2022 Aug 6;13(8):684. doi: 10.1038/s41419-022-05124-w.
3
Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells.
J Virol. 2022 Apr 13;96(7):e0170521. doi: 10.1128/jvi.01705-21. Epub 2022 Mar 9.
4
Inhibition of SARS-CoV-2 by type I and type III interferons.
J Biol Chem. 2020 Oct 9;295(41):13958-13964. doi: 10.1074/jbc.AC120.013788. Epub 2020 Jun 25.
6
Type I and III interferons are good markers to monitor COVID-19 pathophysiology.
Cytokine. 2023 May;165:156172. doi: 10.1016/j.cyto.2023.156172. Epub 2023 Mar 13.
7
SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy.
J Med Virol. 2022 Nov;94(11):5174-5188. doi: 10.1002/jmv.27965. Epub 2022 Jul 7.
8
Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells.
Cell Rep. 2020 Jul 7;32(1):107863. doi: 10.1016/j.celrep.2020.107863. Epub 2020 Jun 19.
9
IFN-λ uniquely promotes CD8 T cell immunity against SARS-CoV-2 relative to type I IFN.
JCI Insight. 2024 May 21;9(13):e171830. doi: 10.1172/jci.insight.171830.

引用本文的文献

2
USP22 enhances atherosclerotic plaque stability and macrophage efferocytosis by stabilizing PPARγ.
Commun Biol. 2025 Apr 29;8(1):678. doi: 10.1038/s42003-025-08116-6.
3
The Dual Role of cGAS-STING Signaling in COVID-19: Implications for Therapy.
Cells. 2025 Feb 28;14(5):362. doi: 10.3390/cells14050362.
4
In search of a function for human type III interferons: insights from inherited and acquired deficits.
Curr Opin Immunol. 2024 Apr;87:102427. doi: 10.1016/j.coi.2024.102427. Epub 2024 May 22.
5
Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium.
Front Immunol. 2024 Mar 1;15:1338096. doi: 10.3389/fimmu.2024.1338096. eCollection 2024.
6
USP22 regulates APL differentiation via PML-RARα stabilization and IFN repression.
Cell Death Discov. 2024 Mar 11;10(1):128. doi: 10.1038/s41420-024-01894-8.
9
Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection.
Front Cell Infect Microbiol. 2023 Jun 9;13:1217383. doi: 10.3389/fcimb.2023.1217383. eCollection 2023.
10
Progress of cGAS-STING signaling in response to SARS-CoV-2 infection.
Front Immunol. 2022 Dec 7;13:1010911. doi: 10.3389/fimmu.2022.1010911. eCollection 2022.

本文引用的文献

1
SARS-CoV-2 Omicron variant virus isolates are highly sensitive to interferon treatment.
Cell Discov. 2022 May 10;8(1):42. doi: 10.1038/s41421-022-00408-z.
2
The cGAS-STING pathway drives type I IFN immunopathology in COVID-19.
Nature. 2022 Mar;603(7899):145-151. doi: 10.1038/s41586-022-04421-w. Epub 2022 Jan 19.
3
SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB.
Commun Biol. 2022 Jan 12;5(1):45. doi: 10.1038/s42003-021-02983-5.
4
Protease cleavage of RNF20 facilitates coronavirus replication via stabilization of SREBP1.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2107108118.
5
Pattern recognition receptors in health and diseases.
Signal Transduct Target Ther. 2021 Aug 4;6(1):291. doi: 10.1038/s41392-021-00687-0.
6
Pharmacological activation of STING blocks SARS-CoV-2 infection.
Sci Immunol. 2021 May 18;6(59). doi: 10.1126/sciimmunol.abi9007.
7
A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection.
Sci Immunol. 2021 May 18;6(59). doi: 10.1126/sciimmunol.abi9002.
8
Functional landscape of SARS-CoV-2 cellular restriction.
Mol Cell. 2021 Jun 17;81(12):2656-2668.e8. doi: 10.1016/j.molcel.2021.04.008. Epub 2021 Apr 13.
9
10
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.
Nat Rev Immunol. 2021 Sep;21(9):548-569. doi: 10.1038/s41577-021-00524-z. Epub 2021 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验