Aslam Abdul Rehman, Hafeez Nauman, Heidari Hadi, Altaf Muhammad Awais Bin
Department of Electrical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom.
Front Neurosci. 2022 Jul 22;16:844851. doi: 10.3389/fnins.2022.844851. eCollection 2022.
Autism Spectrum Disorder (ASD) is characterized by impairments in social and cognitive skills, emotional disorders, anxiety, and depression. The prolonged conventional ASD diagnosis raises the sheer need for early meaningful intervention. Recently different works have proposed potential for ASD diagnosis and intervention through emotions prediction using deep neural networks (DNN) and machine learning algorithms. However, these systems lack an extensive large-scale feature extraction (LSFE) analysis through multiple benchmark data sets. LSFE analysis is required to identify and utilize the most relevant features and channels for emotion recognition and ASD prediction. Considering these challenges, for the first time, we have analyzed and evaluated an extensive feature set to select the optimal features using LSFE and feature selection algorithms (FSA). A set of up to eight most suitable channels was identified using different best-case FSA. The subject-wise importance of channels and features is also identified. The proposed method provides the best-case accuracies, precision, and recall of 95, 92, and 90%, respectively, for emotions prediction using a linear support vector machine (LSVM) classifier. It also provides the best-case accuracy, precision, and recall of 100% for ASD classification. This work utilized the largest number of benchmark data sets (5) and subjects (99) for validation reported till now in the literature. The LSVM classification algorithm proposed and utilized in this work has significantly lower complexity than the DNN, convolutional neural network (CNN), Naïve Bayes, and dynamic graph CNN used in recent ASD and emotion prediction systems.
自闭症谱系障碍(ASD)的特征是社交和认知技能受损、情绪障碍、焦虑和抑郁。传统的ASD诊断过程漫长,因此迫切需要早期有意义的干预。最近,不同的研究提出了通过使用深度神经网络(DNN)和机器学习算法进行情绪预测来诊断和干预ASD的可能性。然而,这些系统缺乏通过多个基准数据集进行广泛的大规模特征提取(LSFE)分析。需要进行LSFE分析来识别和利用与情绪识别和ASD预测最相关的特征和通道。考虑到这些挑战,我们首次使用LSFE和特征选择算法(FSA)分析和评估了一个广泛的特征集,以选择最佳特征。使用不同的最佳情况FSA确定了一组多达八个最合适的通道。还确定了通道和特征在个体层面上的重要性。所提出的方法在使用线性支持向量机(LSVM)分类器进行情绪预测时,分别提供了95%、92%和90%的最佳情况准确率、精确率和召回率。在ASD分类方面,它还提供了100%的最佳情况准确率、精确率和召回率。这项工作使用了文献中迄今报道的最多数量的基准数据集(5个)和受试者(99名)进行验证。这项工作中提出并使用的LSVM分类算法的复杂度明显低于最近的ASD和情绪预测系统中使用的DNN、卷积神经网络(CNN)、朴素贝叶斯和动态图CNN。