Suppr超能文献

边缘计算中基于胸部X光图像的实时新冠病毒检测

Real-time COVID-19 detection over chest x-ray images in edge computing.

作者信息

Xu Weijie, Chen Beijing, Shi Haoyang, Tian Hao, Xu Xiaolong

机构信息

School of Computer Science Nanjing University of Information Science and Technology 210044 Nanjing China.

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) Nanjing University of Information Science and Technology Nanjing China.

出版信息

Comput Intell. 2022 Apr 30. doi: 10.1111/coin.12528.

Abstract

Severe Coronavirus Disease 2019 (COVID-19) has been a global pandemic which provokes massive devastation to the society, economy, and culture since January 2020. The pandemic demonstrates the inefficiency of superannuated manual detection approaches and inspires novel approaches that detect COVID-19 by classifying chest x-ray (CXR) images with deep learning technology. Although a wide range of researches about bran-new COVID-19 detection methods that classify CXR images with centralized convolutional neural network (CNN) models have been proposed, the latency, privacy, and cost of information transmission between the data resources and the centralized data center will make the detection inefficient. Hence, in this article, a COVID-19 detection scheme via CXR images classification with a lightweight CNN model called MobileNet in edge computing is proposed to alleviate the computing pressure of centralized data center and ameliorate detection efficiency. Specifically, the general framework is introduced first to manifest the overall arrangement of the computing and information services ecosystem. Then, an unsupervised model DCGAN is employed to make up for the small scale of data set. Moreover, the implementation of the MobileNet for CXR images classification is presented at great length. The specific distribution strategy of MobileNet models is followed. The extensive evaluations of the experiments demonstrate the efficiency and accuracy of the proposed scheme for detecting COVID-19 over CXR images in edge computing.

摘要

自2020年1月以来,严重的2019冠状病毒病(COVID-19)已成为一场全球大流行,给社会、经济和文化带来了巨大破坏。这场大流行显示了过时的人工检测方法的低效性,并催生了通过深度学习技术对胸部X光(CXR)图像进行分类来检测COVID-19的新方法。尽管已经提出了大量关于使用集中式卷积神经网络(CNN)模型对CXR图像进行分类的全新COVID-19检测方法的研究,但数据资源与集中式数据中心之间信息传输的延迟、隐私和成本将使检测效率低下。因此,在本文中,提出了一种在边缘计算中通过使用名为MobileNet的轻量级CNN模型对CXR图像进行分类的COVID-19检测方案,以减轻集中式数据中心的计算压力并提高检测效率。具体来说,首先介绍了总体框架,以展示计算和信息服务生态系统的整体布局。然后,采用无监督模型DCGAN来弥补数据集规模小的问题。此外,还详细介绍了用于CXR图像分类的MobileNet的实现。遵循了MobileNet模型的具体分布策略。实验的广泛评估证明了所提出的方案在边缘计算中检测CXR图像上的COVID-19的效率和准确性。

相似文献

5
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.基于胸部 X 光图像的 COVID-19 分类深度学习算法。
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.

本文引用的文献

10
COVID-19: towards controlling of a pandemic.2019冠状病毒病:迈向大流行的控制
Lancet. 2020 Mar 28;395(10229):1015-1018. doi: 10.1016/S0140-6736(20)30673-5. Epub 2020 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验