Suppr超能文献

共享最近邻方法和交互式浏览器用于全面非小细胞肺癌数据集的网络分析。

Shared Nearest Neighbors Approach and Interactive Browser for Network Analysis of a Comprehensive Non-Small-Cell Lung Cancer Data Set.

机构信息

TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX.

Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

JCO Clin Cancer Inform. 2022 Jul;6:e2200040. doi: 10.1200/CCI.22.00040.

Abstract

PURPOSE

Advances in biological measurement technologies are enabling large-scale studies of patient cohorts across multiple omics platforms. Holistic analysis of these data can generate actionable insights for translational research and necessitate new approaches for data integration and mining.

METHODS

We present a novel approach for integrating data across platforms on the basis of the shared nearest neighbors algorithm and use it to create a network of multiplatform data from the immunogenomic profiling of non-small-cell lung cancer project.

RESULTS

Benchmarking demonstrates that the shared nearest neighbors-based network approach outperforms a traditional gene-gene network in capturing established interactions while providing new ones on the basis of the interplay between measurements from different platforms. When used to examine patient characteristics of interest, our approach provided signatures associated with and new leads related to recurrence and TP53 oncogenotype.

CONCLUSION

The network developed offers an unprecedented, holistic view into immunogenomic profiling of non-small-cell lung cancer, which can be explored through the accompanying interactive browser that we built.

摘要

目的

生物测量技术的进步使人们能够在多个组学平台上对患者队列进行大规模研究。对这些数据进行整体分析可为转化研究提供可操作的见解,并需要新的方法来进行数据集成和挖掘。

方法

我们提出了一种基于最近邻共享算法的跨平台数据集成新方法,并将其用于创建非小细胞肺癌免疫基因组分析项目的多平台数据网络。

结果

基准测试表明,基于最近邻共享的网络方法在捕获已建立的相互作用方面优于传统的基因-基因网络,同时基于不同平台的测量值之间的相互作用提供了新的相互作用。当用于检查感兴趣的患者特征时,我们的方法提供了与复发和 TP53 癌基因型相关的特征以及新的线索。

结论

所开发的网络提供了对非小细胞肺癌免疫基因组分析的前所未有的整体视图,可以通过我们构建的配套交互浏览器进行探索。

相似文献

3
Unsupervised detection of genes of influence in lung cancer using biological networks.基于生物网络的肺癌影响基因无监督检测。
Bioinformatics. 2011 Nov 15;27(22):3166-72. doi: 10.1093/bioinformatics/btr533. Epub 2011 Sep 28.
4
Multiplatform-based molecular subtypes of non-small-cell lung cancer.基于多平台的非小细胞肺癌分子亚型
Oncogene. 2017 Mar;36(10):1384-1393. doi: 10.1038/onc.2016.303. Epub 2016 Oct 24.

本文引用的文献

5
T-cell repertoire analysis and metrics of diversity and clonality.T 细胞受体库分析及多样性和克隆性指标。
Curr Opin Biotechnol. 2020 Oct;65:284-295. doi: 10.1016/j.copbio.2020.07.010. Epub 2020 Sep 2.
7
Pan-cancer analysis of whole genomes.泛癌症全基因组分析。
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
10
Mutant p53 as a guardian of the cancer cell.突变型 p53 作为癌细胞的守护者。
Cell Death Differ. 2019 Jan;26(2):199-212. doi: 10.1038/s41418-018-0246-9. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验