Suppr超能文献

连接肽模块可使液-液相变中的自组装纤维受控共存。

Connected Peptide Modules Enable Controlled Co-Existence of Self-Assembled Fibers Inside Liquid Condensates.

机构信息

Nanoscience Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, New York 10031, United States.

Structural Biology Initiative at Advanced Science Research Center, Graduate Center of the City University of New York, New York, New York 10031, United States.

出版信息

J Am Chem Soc. 2022 Aug 24;144(33):15002-15007. doi: 10.1021/jacs.2c05897. Epub 2022 Aug 10.

Abstract

Supramolecular self-assembly of fibrous components and liquid-liquid phase separation are at the extremes of the order-to-disorder spectrum. They collectively play key roles in cellular organization. It is still a major challenge to design systems where both highly ordered nanostructures and liquid-liquid phase-separated domains can coexist. We present a three-component assembly approach that generates fibrous domains that exclusively form inside globally disordered, liquid condensates. This is achieved by creating amphiphilic peptides that combine the features of fibrillar assembly (the amyloid domain LVFFA) and complex coacervation (oligo-arginine and adenosine triphosphate (ATP)) in one peptide, namely, LVFFAR. When this hybrid peptide is mixed in different ratios with R and ATP, we find that conditions can be created where fibrous assembly is exclusively observed inside liquid coacervates. Through fluorescence and atomic force microscopy characterization, we investigate the dynamic evolution of ordered and disordered features over time. It was observed that the fibers nucleate and mature inside the droplets and that these fiber-containing liquid droplets can also undergo fusion, showing that the droplets remain liquid-like. Our work thus generates opportunities for the design of ordered structures within the confined environment of biomolecular condensates, which may be useful to create supramolecular materials in defined compartments and as model systems that can enhance understanding of ordering principles in biology.

摘要

超分子纤维组件的自组装和液-液相分离处于有序到无序谱的两个极端。它们在细胞组织中共同起着关键作用。设计既能高度有序的纳米结构又能共存的液-液相分离区域的系统仍然是一个主要挑战。我们提出了一种三组分组装方法,该方法生成的纤维结构仅存在于全局无序的液相凝聚相中。这是通过创建既能形成纤维组装(淀粉样结构域 LVFFA)又能进行复杂凝聚(低聚精氨酸和三磷酸腺苷(ATP))的两亲性肽来实现的,这种肽的结构域名为 LVFFAR。当这种杂合肽与 R 和 ATP 以不同的比例混合时,我们发现可以创造出仅在液相凝聚相中观察到纤维组装的条件。通过荧光和原子力显微镜的特征分析,我们研究了有序和无序特征随时间的动态演变。观察到纤维在液滴内部成核和成熟,并且这些含有纤维的液滴也可以融合,表明液滴仍然保持液态。我们的工作为在生物分子凝聚物的受限环境中设计有序结构提供了机会,这可能有助于在定义的隔室中创建超分子材料,并作为可以增强对生物学中有序原理理解的模型系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验