Suppr超能文献

基于芯片荧光显微镜的细胞分类的机器学习算法对微流道变形的稳健性

On the robustness of machine learning algorithms toward microfluidic distortions for cell classification on-chip fluorescence microscopy.

机构信息

Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAE IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49000 Angers, France.

Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), CNRS UMR 5220 - INSERM U1206, Université Lyon 1, Insa de Lyon, Lyon, France.

出版信息

Lab Chip. 2022 Sep 13;22(18):3453-3463. doi: 10.1039/d2lc00482h.

Abstract

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges. One of these is the effect of the sample flow velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how these visual distortions impact the final classification task in a real-world use-case of cancer cell screening, using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate, by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the acquired 3D volumes, by relying on their 2D sum -projection transformation, to reach an efficient real time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic dataset and to investigate the effect of flow speed on cell classification for any biological samples and a large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP).

摘要

单细胞成像和分选是生物学和临床应用中的关键技术。当与微流控、荧光标记和机器学习结合使用时,这些技术的功能会得到增强。然而,这一探索面临着几个挑战。其中之一是样品流速对分类性能的影响。事实上,细胞流动速度会增加运动模糊并减少每个样本采集的帧数,从而影响图像采集的质量。我们通过使用微流控平台结合光片荧光显微镜,在癌症细胞筛选的实际用例中研究了这些视觉扭曲如何影响最终的分类任务。我们通过分析模拟和实验数据证明,在单细胞分类中实现高速和高精度是可能的。我们通过依赖于其 2D 总和投影变换来克服采集的 3D 体积的 3D 切片可变性,从而使用来自模拟数据的迁移学习的卷积神经网络实现高效的实时分类,准确率达到 99.4%。除了这个特定的用例之外,我们还提供了一个网络平台,用于生成合成数据集,并研究任何生物样本和各种荧光显微镜的流速对细胞分类的影响(https://www.creatis.insa-lyon.fr/site7/en/MicroVIP)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验