Suppr超能文献

一种用于高通量机制驱动型表型化合物筛选的深度学习框架。

A deep learning framework for high-throughput mechanism-driven phenotype compound screening.

作者信息

Pham Thai-Hoang, Qiu Yue, Zeng Jucheng, Xie Lei, Zhang Ping

机构信息

The Ohio State University, Department of Computer Science and Engineering, Columbus, 43210, USA.

The City University of New York, Ph.D. Program in Biology, The Graduate Center, New York, 10016, USA.

出版信息

bioRxiv. 2020 Jul 20:2020.07.19.211235. doi: 10.1101/2020.07.19.211235.

Abstract

Target-based high-throughput compound screening dominates conventional one-drug-one-gene drug discovery process. However, the readout from the chemical modulation of a single protein is poorly correlated with phenotypic response of organism, leading to high failure rate in drug development. Chemical-induced gene expression profile provides an attractive solution to phenotype-based screening. However, the use of such data is currently limited by their sparseness, unreliability, and relatively low throughput. Several methods have been proposed to impute missing values for gene expression datasets. However, few existing methods can perform chemical compound screening. In this study, we propose a mechanism-driven neural network-based method named DeepCE (Deep Chemical Expression) which utilizes graph convolutional neural network to learn chemical representation and multi-head attention mechanism to model chemical substructure-gene and gene-gene feature associations. In addition, we propose a novel data augmentation method which extracts useful information from unreliable experiments in L1000 dataset. The experimental results show that DeepCE achieves the superior performances not only in chemical setting but also in traditional imputation setting compared to state-of-the-art baselines for the prediction of chemical-induced gene expression. We further verify the effectiveness of gene expression profiles generated from DeepCE by comparing them with gene expression profiles in L1000 dataset for downstream classification tasks including drug-target and disease predictions. To demonstrate the value of DeepCE, we apply it to patient-specific drug repurposing of COVID-19 for the first time, and generate novel lead compounds consistent with clinical evidences. Thus, DeepCE provides a potentially powerful framework for robust predictive modeling by utilizing noisy omics data as well as screening novel chemicals for the modulation of systemic response to disease.

摘要

基于靶点的高通量化合物筛选主导着传统的单药单基因药物发现过程。然而,单一蛋白质化学调节的读数与生物体的表型反应相关性较差,导致药物开发的失败率很高。化学诱导基因表达谱为基于表型的筛选提供了一个有吸引力的解决方案。然而,目前此类数据的使用受到其稀疏性、不可靠性和相对较低通量的限制。已经提出了几种方法来估算基因表达数据集的缺失值。然而,现有的方法很少能进行化合物筛选。在本研究中,我们提出了一种基于机制驱动的神经网络方法,名为DeepCE(深度化学表达),该方法利用图卷积神经网络学习化学表示,并使用多头注意力机制对化学子结构-基因和基因-基因特征关联进行建模。此外,我们提出了一种新颖的数据增强方法,该方法从L1000数据集中不可靠的实验中提取有用信息。实验结果表明,与用于预测化学诱导基因表达的现有最先进基线相比,DeepCE不仅在化学设置中而且在传统插补设置中都取得了优异的性能。我们通过将DeepCE生成的基因表达谱与L1000数据集中的基因表达谱进行比较,进一步验证了其在包括药物靶点和疾病预测在内的下游分类任务中的有效性。为了证明DeepCE的价值,我们首次将其应用于COVID-19患者特异性药物再利用,并生成了与临床证据一致的新型先导化合物。因此,DeepCE通过利用有噪声的组学数据提供了一个潜在强大的框架,用于稳健的预测建模以及筛选用于调节疾病全身反应的新型化学物质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373c/7386506/ad15c44496df/nihpp-2020.07.19.211235-f0016.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验