Suppr超能文献

单分子荧光显微镜揭示的替代性剪接体组装途径。

Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy.

机构信息

Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.

出版信息

Cell Rep. 2013 Oct 17;5(1):151-65. doi: 10.1016/j.celrep.2013.08.026. Epub 2013 Sep 26.

Abstract

Removal of introns from nascent transcripts (pre-mRNAs) by the spliceosome is an essential step in eukaryotic gene expression. Previous studies have suggested that the earliest steps in spliceosome assembly in yeast are highly ordered and the stable recruitment of U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site necessarily precedes recruitment of U2 snRNP to the branch site to form the "prespliceosome." Here, using colocalization single-molecule spectroscopy to follow initial spliceosome assembly on eight different S. cerevisiae pre-mRNAs, we demonstrate that active yeast spliceosomes can form by both U1-first and U2-first pathways. Both assembly pathways yield prespliceosomes functionally equivalent for subsequent U5·U4/U6 tri-snRNP recruitment and for intron excision. Although fractional flux through the two pathways varies on different introns, both are operational on all introns studied. Thus, multiple pathways exist for assembling functional spliceosomes. These observations provide insight into the mechanisms of cross-intron coordination of initial spliceosome assembly.

摘要

剪接体从新生转录物(前体 mRNA)中去除内含子是真核基因表达的一个重要步骤。先前的研究表明,酵母中转录体剪接体组装的早期步骤高度有序,并且 U1 小核核糖核蛋白颗粒(snRNP)稳定地招募到 5' 剪接位点,必然先于 U2 snRNP 招募到分支位点,形成“前剪接体”。在这里,我们使用共定位单分子光谱法跟踪八种不同的酿酒酵母前体 mRNA 上的初始剪接体组装,证明活性酵母剪接体可以通过 U1 优先和 U2 优先两种途径形成。两种组装途径都产生了功能等效的前剪接体,可用于随后的 U5·U4/U6 三 snRNP 募集和内含子切除。尽管两种途径的分数通量在不同的内含子上有所不同,但两种途径都在研究的所有内含子上起作用。因此,存在多种途径来组装功能性剪接体。这些观察结果为初始剪接体组装的跨内含子协调机制提供了深入了解。

相似文献

1
Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy.
Cell Rep. 2013 Oct 17;5(1):151-65. doi: 10.1016/j.celrep.2013.08.026. Epub 2013 Sep 26.
2
Prespliceosome structure provides insights into spliceosome assembly and regulation.
Nature. 2018 Jul;559(7714):419-422. doi: 10.1038/s41586-018-0323-8. Epub 2018 Jul 11.
3
Structure of a pre-catalytic spliceosome.
Nature. 2017 Jun 29;546(7660):617-621. doi: 10.1038/nature22799. Epub 2017 May 22.
8
Structural insights into how Prp5 proofreads the pre-mRNA branch site.
Nature. 2021 Aug;596(7871):296-300. doi: 10.1038/s41586-021-03789-5. Epub 2021 Aug 4.
9
RNA Splicing by the Spliceosome.
Annu Rev Biochem. 2020 Jun 20;89:359-388. doi: 10.1146/annurev-biochem-091719-064225. Epub 2019 Dec 3.
10
Ordered and dynamic assembly of single spliceosomes.
Science. 2011 Mar 11;331(6022):1289-95. doi: 10.1126/science.1198830.

引用本文的文献

2
Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing.
Mol Cell. 2024 Oct 3;84(19):3656-3666. doi: 10.1016/j.molcel.2024.08.036.
3
Branch site recognition by the spliceosome.
RNA. 2024 Oct 16;30(11):1397-1407. doi: 10.1261/rna.080198.124.
4
Dynamics and Evolutionary Conservation of B Complex Protein Recruitment During Spliceosome Activation.
bioRxiv. 2024 Aug 8:2024.08.08.606642. doi: 10.1101/2024.08.08.606642.
5
Functional analysis of the zinc finger modules of the splicing factor Luc7.
RNA. 2024 Jul 16;30(8):1058-1069. doi: 10.1261/rna.079956.124.
6
FluoroTensor: Identification and tracking of colocalised molecules and their stoichiometries in multi-colour single molecule imaging via deep learning.
Comput Struct Biotechnol J. 2024 Feb 8;23:918-928. doi: 10.1016/j.csbj.2024.02.004. eCollection 2024 Dec.
7
Functional Analysis of the Zinc Finger Modules of the Splicing Factor Luc7.
bioRxiv. 2024 Feb 4:2024.02.04.578419. doi: 10.1101/2024.02.04.578419.
8
The unusual gene architecture of polyubiquitin is created by dual-specific splice sites.
Genome Biol. 2024 Jan 24;25(1):33. doi: 10.1186/s13059-023-03157-8.
9
Identification of transient intermediates during spliceosome activation by single molecule fluorescence microscopy.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2206815119. doi: 10.1073/pnas.2206815119. Epub 2022 Nov 23.
10
Multi-step recognition of potential 5' splice sites by the U1 snRNP.
Elife. 2022 Aug 12;11:e70534. doi: 10.7554/eLife.70534.

本文引用的文献

1
Pick one, but be quick: 5' splice sites and the problems of too many choices.
Genes Dev. 2013 Jan 15;27(2):129-44. doi: 10.1101/gad.209759.112.
2
The spliceosome: a flexible, reversible macromolecular machine.
Trends Biochem Sci. 2012 May;37(5):179-88. doi: 10.1016/j.tibs.2012.02.009. Epub 2012 Apr 3.
4
Ordered and dynamic assembly of single spliceosomes.
Science. 2011 Mar 11;331(6022):1289-95. doi: 10.1126/science.1198830.
5
Constructing Sample Chambers for Fluorescence Imaging with One-Nanometer Accuracy (FIONA).
CSH Protoc. 2007 Oct 1;2007:pdb.prot4867. doi: 10.1101/pdb.prot4867.
6
The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells.
J Cell Biol. 2010 Oct 4;191(1):75-86. doi: 10.1083/jcb.201004030.
8
Crossing the exon.
Mol Cell. 2010 Apr 23;38(2):159-61. doi: 10.1016/j.molcel.2010.04.010.
9
Conformational dynamics of single pre-mRNA molecules during in vitro splicing.
Nat Struct Mol Biol. 2010 Apr;17(4):504-12. doi: 10.1038/nsmb.1767. Epub 2010 Mar 21.
10
Role and mechanism of U1-independent pre-mRNA splicing in the regulation of alternative splicing.
RNA Biol. 2009 Sep-Oct;6(4):395-8. doi: 10.4161/rna.6.4.9318. Epub 2009 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验