Suppr超能文献

血红素蛋白相互作用的化学蛋白质组图谱。

A Chemical Proteomic Map of Heme-Protein Interactions.

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.

出版信息

J Am Chem Soc. 2022 Aug 24;144(33):15013-15019. doi: 10.1021/jacs.2c06104. Epub 2022 Aug 12.

Abstract

Heme is an essential cofactor for many human proteins as well as the primary transporter of oxygen in blood. Recent studies have also established heme as a signaling molecule, imparting its effects through binding with protein partners rather than through reactivity of its metal center. However, the comprehensive annotation of such heme-binding proteins in the human proteome remains incomplete. Here, we describe a strategy which utilizes a heme-based photoaffinity probe integrated with quantitative proteomics to map heme-protein interactions across the proteome. In these studies, we identified 350+ unique heme-protein interactions, the vast majority of which were heretofore unknown and consist of targets from diverse functional classes, including transporters, receptors, enzymes, transcription factors, and chaperones. Among these proteins is the immune-related interleukin receptor-associated kinase 1 (IRAK1), where we provide preliminary evidence that heme agonizes its catalytic activity. Our findings should improve the current understanding of heme's regulation as well as its signaling functions and facilitate new insights of its roles in human disease.

摘要

血红素是许多人类蛋白质的必需辅因子,也是血液中氧气的主要转运体。最近的研究还确定了血红素作为一种信号分子,通过与蛋白质伴侣结合而不是通过其金属中心的反应来发挥作用。然而,人类蛋白质组中血红素结合蛋白的全面注释仍然不完整。在这里,我们描述了一种利用基于血红素的光亲和探针与定量蛋白质组学相结合的策略,来绘制整个蛋白质组中血红素-蛋白质相互作用的图谱。在这些研究中,我们鉴定了 350 多个独特的血红素-蛋白质相互作用,其中绝大多数以前是未知的,包括来自不同功能类别的靶标,包括转运蛋白、受体、酶、转录因子和伴侣蛋白。这些蛋白质中包括与免疫相关的白细胞介素受体相关激酶 1(IRAK1),我们提供了初步证据表明血红素激活了其催化活性。我们的发现应该提高对血红素调节及其信号功能的现有认识,并促进对其在人类疾病中的作用的新见解。

相似文献

1
A Chemical Proteomic Map of Heme-Protein Interactions.
J Am Chem Soc. 2022 Aug 24;144(33):15013-15019. doi: 10.1021/jacs.2c06104. Epub 2022 Aug 12.
2
Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics.
Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202212111. doi: 10.1002/anie.202212111. Epub 2023 Jan 23.
4
Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.
Mol Cell Proteomics. 2013 Dec;12(12):3851-73. doi: 10.1074/mcp.M113.032367. Epub 2013 Sep 16.
5
Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres.
Chem Soc Rev. 2019 Dec 9;48(24):5624-5657. doi: 10.1039/c9cs00268e.
6
Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells.
Nat Methods. 2013 Mar;10(3):259-64. doi: 10.1038/nmeth.2368. Epub 2013 Feb 10.
8
A novel approach for identifying the heme-binding proteins from mouse tissues.
Genomics Proteomics Bioinformatics. 2003 Feb;1(1):78-86. doi: 10.1016/s1672-0229(03)01011-8.
9
Customizing Functionalized Cofactor Mimics to Study the Human Pyridoxal 5'-Phosphate-Binding Proteome.
Cell Chem Biol. 2019 Oct 17;26(10):1461-1468.e7. doi: 10.1016/j.chembiol.2019.08.003. Epub 2019 Aug 22.
10
Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
J Proteome Res. 2014 Dec 5;13(12):5461-70. doi: 10.1021/pr500845u. Epub 2014 Sep 30.

引用本文的文献

1
Molecular Insights into the Heme-Binding Potential of Plant NCR247-Derived Peptides.
Chembiochem. 2025 Feb 3;26(5):e202400920. doi: 10.1002/cbic.202400920. Epub 2025 Jan 20.
2
Discovering microbiota functions via chemical probe incorporation for targeted sequencing.
Curr Opin Chem Biol. 2025 Feb;84:102551. doi: 10.1016/j.cbpa.2024.102551. Epub 2024 Nov 30.
3
Proteomic strategies to interrogate the Fe-S proteome.
Biochim Biophys Acta Mol Cell Res. 2024 Oct;1871(7):119791. doi: 10.1016/j.bbamcr.2024.119791. Epub 2024 Jun 25.
4
Enhanced mapping of small-molecule binding sites in cells.
Nat Chem Biol. 2024 Jul;20(7):823-834. doi: 10.1038/s41589-023-01514-z. Epub 2024 Jan 2.
5
Heme's relevance genuine? Re-visiting the roles of TANGO2 homologs including HRG-9 and HRG-10 in .
bioRxiv. 2024 Nov 22:2023.11.29.569072. doi: 10.1101/2023.11.29.569072.
6
Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins.
Biomolecules. 2023 Jun 23;13(7):1031. doi: 10.3390/biom13071031.
8
A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites.
Angew Chem Int Ed Engl. 2023 Aug 1;62(31):e202304533. doi: 10.1002/anie.202304533. Epub 2023 Jun 26.
10
Oxidized hemoglobin triggers polyreactivity and autoreactivity of human IgG via transfer of heme.
Commun Biol. 2023 Feb 11;6(1):168. doi: 10.1038/s42003-023-04535-5.

本文引用的文献

1
Functionalised Cofactor Mimics for Interactome Discovery and Beyond.
Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202201136. doi: 10.1002/anie.202201136. Epub 2022 May 31.
2
Understanding the Logistics for the Distribution of Heme in Cells.
JACS Au. 2021 Aug 10;1(10):1541-1555. doi: 10.1021/jacsau.1c00288. eCollection 2021 Oct 25.
3
Hemin accumulation and identification of a heme-binding protein clan in K562 cells by proteomic and computational analysis.
J Cell Physiol. 2022 Feb;237(2):1315-1340. doi: 10.1002/jcp.30595. Epub 2021 Oct 7.
4
Evaluation of fully-functionalized diazirine tags for chemical proteomic applications.
Chem Sci. 2021 May 7;12(22):7839-7847. doi: 10.1039/d1sc01360b.
5
Unravelling the mechanisms controlling heme supply and demand.
Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2104008118.
6
Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ.
Sci Adv. 2021 Jan 27;7(5). doi: 10.1126/sciadv.abc6479. Print 2021 Jan.
7
TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins.
Front Immunol. 2020 Aug 27;11:1964. doi: 10.3389/fimmu.2020.01964. eCollection 2020.
8
Method for identification of heme-binding proteins and quantification of their interactions.
Anal Biochem. 2020 Oct 15;607:113865. doi: 10.1016/j.ab.2020.113865. Epub 2020 Jul 29.
9
Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs.
Front Immunol. 2020 Jun 30;11:1323. doi: 10.3389/fimmu.2020.01323. eCollection 2020.
10
Retinol Saturase: More than the Name Suggests.
Trends Pharmacol Sci. 2020 Jun;41(6):418-427. doi: 10.1016/j.tips.2020.03.007. Epub 2020 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验