The Big Data Institute and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
The Queen's College, University of Oxford, Oxford, UK.
Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20220179. doi: 10.1098/rsta.2022.0179. Epub 2022 Aug 15.
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of mathematical modelling in informing and advising policy decision-making. Effective practice of mathematical modelling has challenges. These can be around the technical modelling framework and how different techniques are combined, the appropriate use of mathematical formalisms or computational languages to accurately capture the intended mechanism or process being studied, in transparency and robustness of models and numerical code, in simulating the appropriate scenarios via explicitly identifying underlying assumptions about the process in nature and simplifying approximations to facilitate modelling, in correctly quantifying the uncertainty of the model parameters and projections, in taking into account the variable quality of data sources, and applying established software engineering practices to avoid duplication of effort and ensure reproducibility of numerical results. Via a collection of 16 technical papers, this special issue aims to address some of these challenges alongside showcasing the usefulness of modelling as applied in this pandemic. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
2019 年冠状病毒病(COVID-19)大流行凸显了数学建模在为政策决策提供信息和咨询方面的重要性。有效的数学建模实践存在一些挑战。这些挑战可能涉及技术建模框架以及如何组合不同的技术,如何正确使用数学形式主义或计算语言来准确捕捉正在研究的机制或过程,模型和数值代码的透明度和稳健性,通过明确识别自然过程中的基本假设并简化简化以促进建模来模拟适当的场景,正确量化模型参数和预测的不确定性,考虑到数据源质量的变化,并应用既定的软件工程实践来避免重复工作并确保数值结果的可重复性。通过收集 16 篇技术论文,本特刊旨在解决其中的一些挑战,同时展示建模在这一大流行中的应用的有用性。本文是“现实流行病建模的技术挑战及克服这些挑战的实例”主题特刊的一部分。