Suppr超能文献

基于 U-Net 网络和注意力模块的牙齿 CT 图像分割方法。

Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module.

机构信息

School of Electrical Engineering, Tongling University, Tongling 244000, China.

出版信息

Comput Math Methods Med. 2022 Aug 19;2022:3289663. doi: 10.1155/2022/3289663. eCollection 2022.

Abstract

Traditional image segmentation methods often encounter problems of low segmentation accuracy and being time-consuming when processing complex tooth Computed Tomography (CT) images. This paper proposes an improved segmentation method for tooth CT images. Firstly, the U-Net network is used to construct a tooth image segmentation model. A large number of feature maps in downsampling are supplemented to downsampling to reduce information loss. At the same time, the problem of inaccurate image segmentation and positioning is solved. Then, the attention module is introduced into the U-Net network to increase the weight of important information and improve the accuracy of network segmentation. Among them, subregion average pooling is used instead of global average pooling to obtain spatial features. Finally, the U-Net network combined with the improved attention module is used to realize the segmentation of tooth CT images. And based on the image collection provided by West China Hospital for experimental demonstration, compared with other algorithms, our method has better segmentation performance and efficiency. The contours of the teeth obtained are clearer, which is helpful to assist the doctor in the diagnosis.

摘要

传统的图像分割方法在处理复杂的牙齿 CT 图像时,往往存在分割精度低和耗时的问题。本文提出了一种改进的牙齿 CT 图像分割方法。首先,利用 U-Net 网络构建牙齿图像分割模型。通过在降采样中补充大量的特征图来进行降采样,以减少信息丢失。同时,解决了图像分割和定位不准确的问题。然后,将注意力模块引入 U-Net 网络中,以增加重要信息的权重,提高网络分割的准确性。其中,使用子区域平均池化代替全局平均池化来获取空间特征。最后,使用结合了改进注意力模块的 U-Net 网络来实现牙齿 CT 图像的分割。并基于华西医院提供的图像集进行实验论证,与其他算法相比,我们的方法具有更好的分割性能和效率。得到的牙齿轮廓更清晰,有助于辅助医生进行诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f5/9417771/ea484b97c93d/CMMM2022-3289663.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验