Mammadov Orkhan, Akkurt Burak Han, Musigmann Manfred, Ari Asena Petek, Blömer David A, Kasap Dilek N G, Henssen Dylan J H A, Nacul Nabila Gala, Sartoretti Elisabeth, Sartoretti Thomas, Backhaus Philipp, Thomas Christian, Stummer Walter, Heindel Walter, Mannil Manoj
University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, Germany.
Department of Medical Imaging, Radboud University Medical Center, Radboud University, 6500HB Nijmegen, the Netherlands.
Heliyon. 2022 Aug 2;8(8):e10023. doi: 10.1016/j.heliyon.2022.e10023. eCollection 2022 Aug.
Our aim is to define the capabilities of radiomics in predicting pseudoprogression from pre-treatment MR images in patients diagnosed with high-grade gliomas using T1 non-contrast-enhanced and contrast-enhanced images.
MATERIAL & METHODS: In this retrospective IRB-approved study, image segmentation of high-grade gliomas was semi-automatically performed using 3D Slicer. Non-contrast-enhanced T1-weighted images and contrast-enhanced T1-weighted images were used prior to surgical therapy or radio-chemotherapy. Imaging data was split into a training sample and an independent test sample at random. We extracted 107 radiomic features by use of PyRadiomics. Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM).
Our cohort included 124 patients (female: n = 53), diagnosed with progressive (n = 61) and pseudoprogressive disease (n = 63) of primary high-grade gliomas. Based on non-contrast-enhanced T1-weighted images of the independent test sample, the mean area under the curve (AUC), mean sensitivity, mean specificity and mean accuracy of our model were 0.651 [0.576, 0.761], 0.616 [0.417, 0.833], 0.578 [0.417, 0.750] and 0.597 [0.500, 0.708] to predict the development of pseudoprogression. In comparison, the independent test data of contrast-enhanced T1-weighted images yielded significantly higher values of AUC = 0.819 [0.760, 0.872], sensitivity = 0.817 [0.750, 0.833], specificity = 0.723 [0.583, 0.833] and accuracy = 0.770 [0.687, 0.833].
Our findings show that it is possible to predict pseudoprogression of high-grade gliomas with a Radiomics model using contrast-enhanced T1-weighted images with comparatively good discriminatory power. The use of a contrast agent results in a clear added value.
我们的目的是确定影像组学在利用T1加权非增强和增强图像从高级别胶质瘤患者的治疗前磁共振图像预测假性进展方面的能力。
在这项经机构审查委员会批准的回顾性研究中,使用3D Slicer对高级别胶质瘤进行半自动图像分割。在手术治疗或放化疗之前使用T1加权非增强图像和T1加权增强图像。将影像数据随机分为训练样本和独立测试样本。我们使用PyRadiomics提取了107个影像组学特征。使用广义增强回归模型(GBM)进行特征选择和模型构建。
我们的队列包括124例患者(女性:n = 53),诊断为原发性高级别胶质瘤的进展期(n = 61)和假性进展期(n = 63)。基于独立测试样本的T1加权非增强图像,我们模型的曲线下平均面积(AUC)、平均灵敏度、平均特异性和平均准确率分别为0.651 [0.576, 0.761]、0.616 [0.417, 0.833]、0.578 [0.417, 0.750]和0.597 [0.500, 0.708],用于预测假性进展的发生。相比之下,T1加权增强图像的独立测试数据产生了显著更高的值,AUC = 0.819 [0.760, 0.872],灵敏度 = 0.817 [0.750, 0.833],特异性 = 0.723 [0.583, 0.833],准确率 = 0.770 [0.687, 0.833]。
我们的研究结果表明,使用具有相对良好鉴别力的T1加权增强图像的影像组学模型可以预测高级别胶质瘤的假性进展。使用造影剂会带来明显的附加值。