Suppr超能文献

基于解剖特征的肺部超声图像质量评估:使用深度卷积神经网络

Anatomical Feature-Based Lung Ultrasound Image Quality Assessment Using Deep Convolutional Neural Network.

作者信息

Ravishankar Surya M, Tsumura Ryosuke, Hardin John W, Hoffmann Beatrice, Zhang Ziming, Zhang Haichong K

机构信息

Worcester Polytechnic Institute, Worcester, USA.

Beth Israel Deaconess Medical Center, Boston, USA.

出版信息

IEEE Int Ultrason Symp. 2021 Sep;2021. doi: 10.1109/ius52206.2021.9593662. Epub 2021 Nov 13.

Abstract

Lung ultrasound (LUS) has been used for point-of-care diagnosis of respiratory diseases including COVID-19, with advantages such as low cost, safety, absence of radiation, and portability. The scanning procedure and assessment of LUS are highly operator-dependent, and the appearance of LUS images varies with the probe's position, orientation, and contact force. Karamalis et al. introduced the concept of ultrasound confidence maps based on random walks to assess the ultrasound image quality algorithmically by estimating the per-pixel confidence in the image data. However, these confidence maps do not consider the clinical context of an image, such as anatomical feature visibility and diagnosability. This work proposes a deep convolutional network that detects important anatomical features in an LUS image to quantify its clinical context. This work introduces an Anatomical Feature-based Confidence (AFC) Map, quantifying an LUS image's clinical context based on the visible anatomical features. We developed two U-net models, each segmenting one of the two classes crucial for analyzing an LUS image, namely 1) Bright Features: Pleural and Rib Lines and 2) Dark Features: Rib Shadows. Each model takes the LUS image as input and outputs the segmented regions with confidence values for the corresponding class. The evaluation dataset consists of ultrasound images extracted from videos of two sub-regions of the chest above the anterior axial line from three human subjects. The feature segmentation models achieved an average Dice score of 0.72 on the model's output for the testing data. The average of non-zero confidence values in all the pixels was calculated and compared against the image quality scores. The confidence values were different between different image quality scores. The results demonstrated the relevance of using an AFC Map to quantify the clinical context of an LUS image.

摘要

肺部超声(LUS)已被用于包括COVID-19在内的呼吸道疾病的床旁诊断,具有成本低、安全、无辐射和便携等优点。LUS的扫描程序和评估高度依赖操作者,并且LUS图像的外观会随探头的位置、方向和接触力而变化。卡拉马利斯等人引入了基于随机游走的超声置信度图的概念,通过估计图像数据中每个像素的置信度来算法评估超声图像质量。然而,这些置信度图没有考虑图像的临床背景,如解剖特征的可见性和可诊断性。这项工作提出了一种深度卷积网络,用于检测LUS图像中的重要解剖特征,以量化其临床背景。这项工作引入了基于解剖特征的置信度(AFC)图,根据可见的解剖特征量化LUS图像的临床背景。我们开发了两个U-net模型,每个模型分割分析LUS图像至关重要的两类中的一类,即1)明亮特征:胸膜和肋骨线,以及2)暗特征:肋骨阴影。每个模型将LUS图像作为输入,并输出具有相应类置信度值的分割区域。评估数据集由从三名人类受试者前轴线以上胸部两个子区域的视频中提取的超声图像组成。特征分割模型在测试数据的模型输出上的平均Dice分数为0.72。计算所有像素中非零置信度值的平均值,并与图像质量分数进行比较。不同图像质量分数的置信度值不同。结果证明了使用AFC图来量化LUS图像临床背景的相关性。

相似文献

本文引用的文献

3
CLUE: COVID-19 lung ultrasound in emergency department.CLUE:急诊科的 COVID-19 肺部超声。
Emerg Med Australas. 2020 Aug;32(4):694-696. doi: 10.1111/1742-6723.13546. Epub 2020 Jun 16.
10
How I do it: lung ultrasound.我的做法:肺部超声检查。
Cardiovasc Ultrasound. 2014 Jul 4;12:25. doi: 10.1186/1476-7120-12-25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验