UNC Neuroscience Center, University of North Carolina, Chapel Hill; Department of Genetics, University of North Carolina, Chapel Hill.
Department of Psychiatry, University of North Carolina, Chapel Hill.
J Vis Exp. 2022 Aug 1(186). doi: 10.3791/64096.
Tissue clearing followed by light-sheet microscopy (LSFM) enables cellular-resolution imaging of intact brain structure, allowing quantitative analysis of structural changes caused by genetic or environmental perturbations. Whole-brain imaging results in more accurate quantification of cells and the study of region-specific differences that may be missed with commonly used microscopy of physically sectioned tissue. Using light-sheet microscopy to image cleared brains greatly increases acquisition speed as compared to confocal microscopy. Although these images produce very large amounts of brain structural data, most computational tools that perform feature quantification in images of cleared tissue are limited to counting sparse cell populations, rather than all nuclei. Here, we demonstrate NuMorph (Nuclear-Based Morphometry), a group of analysis tools, to quantify all nuclei and nuclear markers within annotated regions of a postnatal day 4 (P4) mouse brain after clearing and imaging on a light-sheet microscope. We describe magnetic resonance imaging (MRI) to measure brain volume prior to shrinkage caused by tissue clearing dehydration steps, tissue clearing using the iDISCO+ method, including immunolabeling, followed by light-sheet microscopy using a commercially available platform to image mouse brains at cellular resolution. We then demonstrate this image analysis pipeline using NuMorph, which is used to correct intensity differences, stitch image tiles, align multiple channels, count nuclei, and annotate brain regions through registration to publicly available atlases. We designed this approach using publicly available protocols and software, allowing any researcher with the necessary microscope and computational resources to perform these techniques. These tissue clearing, imaging, and computational tools allow measurement and quantification of the three-dimensional (3D) organization of cell-types in the cortex and should be widely applicable to any wild-type/knockout mouse study design.
组织透明化后进行光片显微镜(LSFM)成像,能够实现完整大脑结构的细胞分辨率成像,从而定量分析遗传或环境干扰引起的结构变化。全脑成像可更准确地量化细胞,并研究通常使用物理切片组织显微镜可能错过的特定区域差异。与共聚焦显微镜相比,使用光片显微镜对透明化大脑进行成像可以大大提高采集速度。尽管这些图像产生了大量的大脑结构数据,但大多数在透明化组织图像中执行特征量化的计算工具仅限于稀疏细胞群的计数,而不是所有核的计数。在这里,我们展示了 NuMorph(基于核的形态计量学),这是一组分析工具,可在光片显微镜上对透明化和成像后的 P4 日龄(P4)小鼠大脑的已注释区域内的所有核和核标记物进行定量。我们描述了磁共振成像(MRI),以在组织透明化脱水步骤引起收缩之前测量脑体积,使用 iDISCO+方法进行组织透明化,包括免疫标记,然后使用市售平台进行光片显微镜成像,以实现细胞分辨率成像。然后,我们使用 NuMorph 展示了这种图像分析管道,该工具用于校正强度差异、拼接图像块、对齐多个通道、计数核,并通过注册到公开可用的图谱来注释大脑区域。我们使用公开可用的协议和软件设计了这种方法,允许任何具有必要显微镜和计算资源的研究人员执行这些技术。这些组织透明化、成像和计算工具允许测量和量化皮质中细胞类型的三维(3D)组织,并且应该广泛适用于任何野生型/敲除小鼠研究设计。