Widyasari Diaz Ayu, Kristiani Anis, Randy Ahmad, Manurung Robeth V, Dewi Rizna Triana, Andreani Agustina Sus, Yuliarto Brian, Jenie S N Aisyiyah
Research Centre for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK, Building 452, Serpong Tangerang Selatan 15314 Banten Indonesia
Department of Physics Engineering, Research Centre for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB) Jl. Ganesha 10 Bandung 40312 Jawa Barat Indonesia.
RSC Adv. 2022 Aug 3;12(33):21582-21590. doi: 10.1039/d2ra03143d. eCollection 2022 Jul 21.
This study reports for the first time the surface modification of fluorescent nanoparticles derived from geothermal silica precipitate with () antibody. The immobilization of biomolecules on the inorganic surface has been carried out using two different pathways, namely the silanization and hydrosilylation reactions. The former applied (3-aminopropyl)triethoxysilane (APTES) as the crosslinker, while the latter used -hydroxysuccinimide coupled with -ethyl-'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC/NHS). Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX), and fluorescence spectroscopy were used to confirm the chemical, physical, and optical properties of the surface-modified fluorescent silica nanoparticles (FSNPs). Based on the results of the FTIR, fluorescence spectroscopy and stability tests, the modified FSNPs with EDC/NHS with a ratio of 4 : 1 were proven to provide the optimum results for further conjugation with antibodies, affording the FSNP-Ab2 sample. The FSNP-Ab2 sample was further tested as a nanoplatform for the fluorescence-quenching detection of , which provided a linear range of 10 to 10 CFU mL for with a limit of detection (LoD) of 1.6 × 10 CFU mL. The selectivity of the biosensor was observed to be excellent for compared to that for and , with reductions in the maximum fluorescence intensity at 588 nm of 89.22%, 26.23%, and 54.06%, respectively. The inorganic nanostructure-biomolecule conjugation with optimized coupling agents showed promising analytical performance as a selective nanoplatform for detecting bacteria.
本研究首次报道了用地热硅沉淀衍生的荧光纳米颗粒与()抗体进行表面修饰。生物分子在无机表面的固定化通过两种不同途径实现,即硅烷化反应和硅氢化反应。前者使用(3-氨丙基)三乙氧基硅烷(APTES)作为交联剂,而后者使用N-羟基琥珀酰亚胺与N-乙基-N'-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC/NHS)。利用傅里叶变换红外(FTIR)光谱、带能谱X射线光谱的场发射扫描电子显微镜(FESEM-EDX)和荧光光谱来确认表面修饰的荧光二氧化硅纳米颗粒(FSNPs)的化学、物理和光学性质。基于FTIR、荧光光谱和稳定性测试的结果,证明比例为4∶1的EDC/NHS修饰的FSNPs为进一步与抗体偶联提供了最佳结果,得到了FSNP-Ab2样品。FSNP-Ab2样品进一步作为用于荧光猝灭检测的纳米平台进行测试,其对的线性检测范围为10至10 CFU mL,检测限(LoD)为1.6×10 CFU mL。与对和的检测相比,观察到该生物传感器对具有优异的选择性,在588 nm处最大荧光强度分别降低了89.22%、26.23%和54.06%。用优化的偶联剂进行无机纳米结构-生物分子偶联,作为检测细菌的选择性纳米平台显示出良好的分析性能。