Suppr超能文献

使用深度迁移高效网络进行结核病诊断

Tuberculosis Diagnosis Using Deep Transferred EfficientNet.

作者信息

Huang Chengxi, Wang Wei, Zhang Xin, Wang Shui-Hua, Zhang Yu-Dong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2639-2646. doi: 10.1109/TCBB.2022.3199572. Epub 2023 Oct 9.

Abstract

Tuberculosis is a very deadly disease, with more than half of all tuberculosis cases dead in countries and regions with relatively poor health care resources. Fortunately, the disease is curable, and early diagnosis and medication can go a long way toward curing TB patients. Unfortunately, traditional methods of TB diagnosis rely on specialist doctors, which is lacking in areas with high TB mortality rates. Diagnostic methods based on artificial intelligence technology are one of the solutions to this problem. We propose a Deep Transferred EfficientNet with SVM (DTE-SVM), which replaces the pre-trained EfficientNet classification layer with an SVM classifier and achieves auspicious performance on a small dataset. After ten runs of 10-fold Cross-Validation, the DTE-SVM has a sensitivity of 93.89±1.96, a specificity of 95.35±1.31, a precision of 95.30±1.24, an accuracy of 94.62±1.00, and an F1-score of 94.62±1.00. In addition, our study conducted ablation studies on the effect of the SVM classifier on model performance and briefly discussed the results.

摘要

结核病是一种非常致命的疾病,在医疗资源相对匮乏的国家和地区,超过一半的结核病病例会死亡。幸运的是,这种疾病是可治愈的,早期诊断和用药对治愈结核病患者大有帮助。不幸的是,传统的结核病诊断方法依赖专科医生,而在结核病死亡率高的地区这种资源较为缺乏。基于人工智能技术的诊断方法是解决这一问题的方法之一。我们提出了一种带有支持向量机的深度迁移高效网络(DTE-SVM),它用支持向量机分类器取代了预训练的高效网络分类层,并在一个小数据集上取得了良好的性能。经过十次十折交叉验证运行后,DTE-SVM的灵敏度为93.89±1.96,特异性为95.35±1.31,精度为95.30±1.24,准确率为94.62±1.00,F1分数为94.62±1.00。此外,我们的研究对支持向量机分类器对模型性能的影响进行了消融研究,并简要讨论了结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验