Bauer Jens, Sala-Casanovas Martí, Amiri Mahsa, Valdevit Lorenzo
Materials Science and Engineering Department, University of California, Irvine, Irvine, CA 92697, USA.
Mechanical and Aerospace Engineering Department, University of California, Irvine, Irvine, CA 92697, USA.
Sci Adv. 2022 Aug 19;8(33):eabo3080. doi: 10.1126/sciadv.abo3080. Epub 2022 Aug 17.
Architected metals and ceramics with nanoscale cellular designs, e.g., nanolattices, are currently subject of extensive investigation. By harnessing extreme material size effects, nanolattices demonstrated classically inaccessible properties at low density, with exceptional potential for superior lightweight materials. This study expands the concept of nanoarchitecture to dense metal/ceramic composites, presenting co-continuous architectures of three-dimensional printed pyrolytic carbon shell reinforcements and electrodeposited nickel matrices. We demonstrate ductile compressive deformability with elongated ultrahigh strength plateaus, resulting in an extremely high combination of compressive strength and strain energy absorption. Simultaneously, property-to-weight ratios outperform those of lightweight nanolattices. Superior to cellular nanoarchitectures, interpenetrating nanocomposites may combine multiple size-dependent characteristics, whether mechanical or functional, which are radically antagonistic in existing materials. This provides a pathway toward previously unobtainable multifunctionality, extending far beyond lightweight structure applications.
具有纳米级蜂窝结构设计的金属和陶瓷,例如纳米晶格,目前是广泛研究的对象。通过利用极端的材料尺寸效应,纳米晶格在低密度下展现出经典材料难以企及的性能,在轻质材料方面具有卓越的潜力。本研究将纳米结构的概念扩展到致密金属/陶瓷复合材料,展示了三维打印热解碳壳增强体与电沉积镍基体的共连续结构。我们证明了其具有延性压缩变形能力以及细长的超高强度平台,从而实现了抗压强度和应变能吸收的极高组合。同时,性能重量比优于轻质纳米晶格。互穿纳米复合材料优于蜂窝状纳米结构,它可以结合多种尺寸相关的特性,无论是机械特性还是功能特性,而这些特性在现有材料中是完全对立的。这为实现以前无法获得的多功能性提供了一条途径,远远超出了轻质结构应用的范畴。