Suppr超能文献

使用高熔点聚合物的大幅面增材制造与加工。第一部分:实时颗粒和气相排放物

Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions.

作者信息

Stefaniak Aleksandr B, Bowers Lauren N, Martin Stephen B, Hammond Duane R, Ham Jason E, Wells J R, Fortner Alyson R, Knepp Alycia K, du Preez Sonette, Pretty Jack R, Roberts Jennifer L, du Plessis Johan L, Schmidt Austin, Duling Matthew G, Bader Andrew, Virji M Abbas

机构信息

National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States.

National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States.

出版信息

J Chem Health Saf. 2021 Mar 25;28(3):190-200. doi: 10.1021/acs.chas.0c00128.

Abstract

The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 10 to 7.7 × 10), PC (5.2 × 10 to 3.6 × 10), Ultem (5.7 × 10 to 3.1 × 10), PPS (4.6 × 10 to 6.2 × 10), PSU (1.5 × 10 to 3.4 × 10), and PESU (2.0 to 5.0 × 10). For print jobs where the mass of extruded polymer was known, particle yield values (g extruded) were as follows: ABS (4.5 × 10 to 2.9 × 10), PC (1.0 × 10 to 1.7 × 10), PSU (5.1 × 10 to 1.2 × 10), and PESU (0.8 × 10 to 1.7 × 10). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO and particle concentrations were moderately correlated ( = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.

摘要

关于使用3D打印机进行材料挤出增材制造过程中排放物的文献正在不断增加;然而,对于能够挤出高熔点聚合物的大幅面增材制造(LFAM)机器,相关数据却很匮乏。在六种聚合物的挤出过程中,对两台LFAM机器的排放物进行了监测,这六种聚合物分别是:丙烯腈丁二烯苯乙烯(ABS)、聚碳酸酯(PC)、高熔点聚砜(PSU)、聚醚砜(PESU)、聚苯硫醚(PPS)和聚醚酰亚胺(Ultem)。实时监测了颗粒数量、总挥发性有机化合物(TVOC)、一氧化碳(CO)和二氧化碳(CO₂)的浓度。颗粒排放率值(个/分钟)如下:ABS(1.7×10至7.7×10)、PC(5.2×10至3.6×10)、Ultem(5.7×10至3.1×10)、PPS(4.6×10至6.2×10)、PSU(1.5×10至3.4×10)和PESU(2.0至5.0×10)。对于已知挤出聚合物质量的打印作业,颗粒产率值(克/挤出聚合物)如下:ABS(4.5×10至2.9×10)、PC(1.0×10至1.7×10)、PSU(5.1×10至1.2×10)和PESU(0.8×10至1.7×10)。TVOC排放产率范围为0.005毫克/克挤出聚合物(PESU)至0.7毫克/克挤出聚合物(ABS)。使用壁挂式排气通风扇不足以完全去除打印室内空气中的颗粒物和TVOC。对于Ultem、PPS或PSU,实时CO监测并非颗粒物和TVOC排放情况的有效指标。对于PC聚合物,平均CO浓度和颗粒浓度呈中度相关(r = 0.76)。LFAM机器挤出ABS、PC和四种高熔点聚合物时释放的颗粒物和TVOC水平值得考虑采取工程控制措施。一些聚合物的LFAM颗粒排放产率与常见桌面级3D打印机的排放产率相似。

相似文献

2
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases.
J Chem Health Saf. 2021 Jul 26;28(4):268-278. doi: 10.1021/acs.chas.0c00129. Epub 2021 Mar 25.
3
Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures.
J Toxicol Environ Health B Crit Rev. 2021 Jun 17:1-50. doi: 10.1080/10937404.2021.1936319.
4
Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines.
Saf Health Work. 2019 Jun;10(2):229-236. doi: 10.1016/j.shaw.2018.10.003. Epub 2018 Nov 9.
5
Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers.
J Occup Environ Hyg. 2019 Aug;16(8):519-531. doi: 10.1080/15459624.2019.1612068. Epub 2019 May 16.
6
Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.
J Occup Environ Hyg. 2017 Jul;14(7):540-550. doi: 10.1080/15459624.2017.1302589.
7
Emissions associated with operations of four different additive manufacturing or 3D printing technologies.
J Occup Environ Hyg. 2020 Oct;17(10):464-479. doi: 10.1080/15459624.2020.1798012. Epub 2020 Aug 18.
8
Volatile organic compound and particulate emissions from the production and use of thermoplastic biocomposite 3D printing filaments.
J Occup Environ Hyg. 2022 Jun;19(6):381-393. doi: 10.1080/15459624.2022.2063879. Epub 2022 May 11.
9
Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.
J Occup Environ Hyg. 2016;13(2):121-32. doi: 10.1080/15459624.2015.1091957.
10
Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys.
Inhal Toxicol. 2019 Nov-Dec;31(13-14):432-445. doi: 10.1080/08958378.2019.1705441. Epub 2019 Dec 24.

引用本文的文献

1
The size distribution of nanoparticles emitted from advanced manufacturing devices impacts predicted carcinogenic potential.
Front Public Health. 2025 Apr 9;13:1582690. doi: 10.3389/fpubh.2025.1582690. eCollection 2025.
4
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases.
J Chem Health Saf. 2021 Jul 26;28(4):268-278. doi: 10.1021/acs.chas.0c00129. Epub 2021 Mar 25.
5
Identification of effective control technologies for additive manufacturing.
J Toxicol Environ Health B Crit Rev. 2022 Jul 4;25(5):211-249. doi: 10.1080/10937404.2022.2092569. Epub 2022 Jun 26.

本文引用的文献

1
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases.
J Chem Health Saf. 2021 Jul 26;28(4):268-278. doi: 10.1021/acs.chas.0c00129. Epub 2021 Mar 25.
2
Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printer.
J Chem Health Saf. 2019 Mar;26(2):19-30. doi: 10.1016/j.jchas.2018.11.001.
4
The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments.
Sci Total Environ. 2019 Nov 20;692:984-994. doi: 10.1016/j.scitotenv.2019.07.257. Epub 2019 Jul 17.
5
Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials.
Environ Sci Technol. 2019 Oct 15;53(20):12054-12061. doi: 10.1021/acs.est.9b04168. Epub 2019 Sep 26.
6
Modeling Particle Emissions from Three-Dimensional Printing with Acrylonitrile-Butadiene-Styrene Polymer Filament.
Environ Sci Technol. 2019 Aug 20;53(16):9656-9663. doi: 10.1021/acs.est.9b02818. Epub 2019 Aug 8.
7
Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines.
Saf Health Work. 2019 Jun;10(2):229-236. doi: 10.1016/j.shaw.2018.10.003. Epub 2018 Nov 9.
8
VOC Emissions and Formation Mechanisms from Carbon Nanotube Composites during 3D Printing.
Environ Sci Technol. 2019 Apr 16;53(8):4364-4370. doi: 10.1021/acs.est.9b00765. Epub 2019 Mar 26.
9
Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer.
Environ Int. 2019 Feb;123:476-485. doi: 10.1016/j.envint.2018.12.014. Epub 2019 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验