Suppr超能文献

对工业规模增材制造机器使用过程中的排放和暴露情况的洞察。

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines.

作者信息

Stefaniak A B, Johnson A R, du Preez S, Hammond D R, Wells J R, Ham J E, LeBouf R F, Martin S B, Duling M G, Bowers L N, Knepp A K, de Beer D J, du Plessis J L

机构信息

National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.

North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom, 2520, South Africa.

出版信息

Saf Health Work. 2019 Jun;10(2):229-236. doi: 10.1016/j.shaw.2018.10.003. Epub 2018 Nov 9.

Abstract

BACKGROUND

Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators.

METHODS

Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes.

RESULTS

Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from 4.1 × 10 (Ultem filament) to 2.2 × 10 [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (μg/min) ranged from 1.9 × 10 (acrylonitrile butadiene styrene and polycarbonate) to 9.4 × 10 (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open (2.3 × 10 number/min) than when the lid was closed (1.5-5.5 × 10 number/min); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and -xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels.

CONCLUSION

Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

摘要

背景

新出现的报告表明,接触某些增材制造(AM)工艺排放物可能对健康产生不良影响。关于工业工作场所增材制造机器的排放以及增材制造操作人员的个人暴露情况,实际数据匮乏。

方法

在四个使用工业规模材料挤出和材料喷射增材制造工艺的制造设施中,采用实时和时间积分采样技术对空气中的颗粒物和有机化学物质排放以及个人暴露情况进行了表征。

结果

使用凝结核计数器,材料挤出增材制造机器基于数量的颗粒物排放率(ERs)(个/分钟)范围为4.1×10(聚醚酰亚胺长丝)至2.2×10[丙烯腈-丁二烯-苯乙烯和聚碳酸酯长丝]。对于这些相同的机器,总挥发性有机化合物ERs(微克/分钟)范围为从(丙烯腈-丁二烯-苯乙烯和聚碳酸酯)的1.9×10至(聚醚酰亚胺)的9.4×10。对于材料喷射机器,盖子打开时基于数量的颗粒物ER更高(2.3×10个/分钟),而盖子关闭时为(1.5 - 5.5×10个/分钟);无论盖子位置如何,总挥发性有机化合物ERs相似。两种增材制造工艺中均常见低水平的丙酮、苯、甲苯和二甲苯。检测到了羰基化合物;然而,没有一种被明确归因于增材制造工艺。个人对金属(铝和铁)和八种挥发性有机化合物的暴露均低于美国国家职业安全与健康研究所(NIOSH)推荐的暴露水平。

结论

使用热塑性塑料和树脂的工业规模增材制造机器向工作场所空气中释放颗粒物和有机蒸气。需要更多研究来了解影响实际工业规模增材制造工艺排放和暴露的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a1/6598813/1735eb9404bc/gr1.jpg

相似文献

1
Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines.
Saf Health Work. 2019 Jun;10(2):229-236. doi: 10.1016/j.shaw.2018.10.003. Epub 2018 Nov 9.
2
Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures.
J Toxicol Environ Health B Crit Rev. 2021 Jun 17:1-50. doi: 10.1080/10937404.2021.1936319.
3
Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printer.
J Chem Health Saf. 2019 Mar;26(2):19-30. doi: 10.1016/j.jchas.2018.11.001.
4
Emissions associated with operations of four different additive manufacturing or 3D printing technologies.
J Occup Environ Hyg. 2020 Oct;17(10):464-479. doi: 10.1080/15459624.2020.1798012. Epub 2020 Aug 18.
6
Workplace Exposure Measurements of Emission from Industrial 3D Printing.
Ann Work Expo Health. 2023 Jun 6;67(5):596-608. doi: 10.1093/annweh/wxad006.
7
Organic compound and particle emissions of additive manufacturing with photopolymer resins and chemical outgassing of manufactured resin products.
J Toxicol Environ Health A. 2022 Mar 4;85(5):198-216. doi: 10.1080/15287394.2021.1998814. Epub 2021 Nov 11.
9
Emissions and Exposures Associated with the Use of an Inconel Powder during Directed Energy Deposition Additive Manufacturing.
Int J Environ Res Public Health. 2023 Jun 22;20(13):6206. doi: 10.3390/ijerph20136206.

引用本文的文献

1
2
Three-Dimensional (3D) Printing in Non-Industrial Spaces: A Summary of Emissions Evaluations in 11 School Settings.
J Sch Health. 2025 Apr-May;95(4-5):307-316. doi: 10.1111/josh.13541. Epub 2025 Jan 22.
3
Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment?
Polymers (Basel). 2024 Jul 11;16(14):1986. doi: 10.3390/polym16141986.
4
Inhalation of Microplastics-A Toxicological Complexity.
Toxics. 2024 May 11;12(5):358. doi: 10.3390/toxics12050358.
5
Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats.
J Toxicol Environ Health A. 2024 Apr 17;87(8):325-341. doi: 10.1080/15287394.2024.2311170. Epub 2024 Feb 6.
6
Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling.
Sci Total Environ. 2023 Feb 20;860:160512. doi: 10.1016/j.scitotenv.2022.160512. Epub 2022 Nov 25.
7
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases.
J Chem Health Saf. 2021 Jul 26;28(4):268-278. doi: 10.1021/acs.chas.0c00129. Epub 2021 Mar 25.
9
Identification of effective control technologies for additive manufacturing.
J Toxicol Environ Health B Crit Rev. 2022 Jul 4;25(5):211-249. doi: 10.1080/10937404.2022.2092569. Epub 2022 Jun 26.

本文引用的文献

2
Health survey of employees regularly using 3D printers.
Occup Med (Lond). 2018 May 17;68(3):211-214. doi: 10.1093/occmed/kqy042.
3
Case report of asthma associated with 3D printing.
Occup Med (Lond). 2017 Dec 2;67(8):652-654. doi: 10.1093/occmed/kqx129.
4
Inhalation exposure to three-dimensional printer emissions stimulates acute hypertension and microvascular dysfunction.
Toxicol Appl Pharmacol. 2017 Nov 15;335:1-5. doi: 10.1016/j.taap.2017.09.016. Epub 2017 Sep 21.
5
Capturing PM2.5 Emissions from 3D Printing via Nanofiber-based Air Filter.
Sci Rep. 2017 Sep 4;7(1):10366. doi: 10.1038/s41598-017-10995-7.
6
Characterization and Control of Nanoparticle Emission during 3D Printing.
Environ Sci Technol. 2017 Sep 19;51(18):10357-10368. doi: 10.1021/acs.est.7b01454. Epub 2017 Aug 30.
7
Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.
Environ Sci Technol. 2017 Sep 5;51(17):9516-9523. doi: 10.1021/acs.est.7b01546. Epub 2017 Aug 23.
8
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.
Int J Adv Manuf Technol. 2016 Jul;85(5-8):1857-1876. doi: 10.1007/s00170-015-7973-6. Epub 2015 Nov 14.
9
Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.
J Occup Environ Hyg. 2017 Jul;14(7):540-550. doi: 10.1080/15459624.2017.1302589.
10
Fume emissions from a low-cost 3-D printer with various filaments.
J Occup Environ Hyg. 2017 Jul;14(7):523-533. doi: 10.1080/15459624.2017.1302587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验