Suppr超能文献

提高基于图像的计算机辅助诊断模型的公平性。

Improving model fairness in image-based computer-aided diagnosis.

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, New York, USA.

School of Information, The University of Texas at Austin, Austin, TX, USA.

出版信息

Nat Commun. 2023 Oct 6;14(1):6261. doi: 10.1038/s41467-023-41974-4.

Abstract

Deep learning has become a popular tool for computer-aided diagnosis using medical images, sometimes matching or exceeding the performance of clinicians. However, these models can also reflect and amplify human bias, potentially resulting inaccurate missed diagnoses. Despite this concern, the problem of improving model fairness in medical image classification by deep learning has yet to be fully studied. To address this issue, we propose an algorithm that leverages the marginal pairwise equal opportunity to reduce bias in medical image classification. Our evaluations across four tasks using four independent large-scale cohorts demonstrate that our proposed algorithm not only improves fairness in individual and intersectional subgroups but also maintains overall performance. Specifically, the relative change in pairwise fairness difference between our proposed model and the baseline model was reduced by over 35%, while the relative change in AUC value was typically within 1%. By reducing the bias generated by deep learning models, our proposed approach can potentially alleviate concerns about the fairness and reliability of image-based computer-aided diagnosis.

摘要

深度学习已成为使用医学图像进行计算机辅助诊断的流行工具,其性能有时可与临床医生相媲美,甚至超越临床医生。然而,这些模型也可能反映和放大人类偏见,从而导致不准确的漏诊。尽管存在这种担忧,但通过深度学习提高医学图像分类模型公平性的问题尚未得到充分研究。为了解决这个问题,我们提出了一种利用边际成对均等机会的算法来减少医学图像分类中的偏差。我们在四个独立的大型队列上进行的四项任务评估表明,我们提出的算法不仅提高了个体和交叉亚组的公平性,而且还保持了整体性能。具体来说,我们提出的模型与基线模型之间的成对公平性差异的相对变化减少了 35%以上,而 AUC 值的相对变化通常在 1%以内。通过减少深度学习模型产生的偏差,我们的方法可以减轻人们对基于图像的计算机辅助诊断的公平性和可靠性的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be6/10558498/75ab7738387b/41467_2023_41974_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验