Suppr超能文献

通过对比学习提高自动胸片诊断的公平性。

Improving Fairness of Automated Chest Radiograph Diagnosis by Contrastive Learning.

机构信息

From the Departments of Population Health Sciences (M.L., Z.S., F.W., Y.P.) and Radiology (G.S.), Weill Cornell Medicine, 425 E 61st St, New York, NY 10065; Department of Surgery, University of Minnesota, Minneapolis, Minn (M.L.); and School of Information (T.L., Y.D.) and Department of Electrical and Computer Engineering (G.H.), The University of Texas at Austin, Austin, Tex.

出版信息

Radiol Artif Intell. 2024 Sep;6(5):e230342. doi: 10.1148/ryai.230342.

Abstract

Purpose To develop an artificial intelligence model that uses supervised contrastive learning (SCL) to minimize bias in chest radiograph diagnosis. Materials and Methods In this retrospective study, the proposed method was evaluated on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77 887 chest radiographs in 27 796 patients collected as of April 20, 2023, for COVID-19 diagnosis and the National Institutes of Health ChestX-ray14 dataset with 112 120 chest radiographs in 30 805 patients collected between 1992 and 2015. In the ChestX-ray14 dataset, thoracic abnormalities included atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, and hernia. The proposed method used SCL with carefully selected positive and negative samples to generate fair image embeddings, which were fine-tuned for subsequent tasks to reduce bias in chest radiograph diagnosis. The method was evaluated using the marginal area under the receiver operating characteristic curve difference (∆mAUC). Results The proposed model showed a significant decrease in bias across all subgroups compared with the baseline models, as evidenced by a paired test ( < .001). The ∆mAUCs obtained by the proposed method were 0.01 (95% CI: 0.01, 0.01), 0.21 (95% CI: 0.21, 0.21), and 0.10 (95% CI: 0.10, 0.10) for sex, race, and age subgroups, respectively, on the MIDRC dataset and 0.01 (95% CI: 0.01, 0.01) and 0.05 (95% CI: 0.05, 0.05) for sex and age subgroups, respectively, on the ChestX-ray14 dataset. Conclusion Employing SCL can mitigate bias in chest radiograph diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods. Thorax, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD) © RSNA, 2024 See also the commentary by Johnson in this issue.

摘要

目的 开发一种使用监督对比学习(SCL)的人工智能模型,以最大限度地减少胸部 X 线诊断中的偏差。

材料与方法 本回顾性研究在两个数据集上评估了所提出的方法:截至 2023 年 4 月 20 日,为 COVID-19 诊断而收集的包含 77887 张胸部 X 线片和 27796 名患者的医学成像和数据资源中心(MIDRC)数据集,以及 1992 年至 2015 年期间收集的包含 112120 张胸部 X 线片和 30805 名患者的美国国立卫生研究院 ChestX-ray14 数据集。在 ChestX-ray14 数据集中,胸部异常包括肺不张、心脏增大、胸腔积液、浸润、肿块、结节、肺炎、气胸、实变、水肿、肺气肿、纤维化、胸膜增厚和疝。所提出的方法使用 SCL 与精心选择的阳性和阴性样本生成公平的图像嵌入,然后对这些嵌入进行微调,以减少胸部 X 线诊断中的偏差。该方法使用边缘接收者操作特征曲线差异(∆mAUC)进行评估。

结果 与基线模型相比,所提出的模型在所有亚组中都显示出显著的偏差减少,这一点通过配对 t 检验得到证实( <.001)。在 MIDRC 数据集上,所提出的方法获得的∆mAUC 分别为 0.01(95%置信区间:0.01,0.01)、0.21(95%置信区间:0.21,0.21)和 0.10(95%置信区间:0.10,0.10),用于性别、种族和年龄亚组,而在 ChestX-ray14 数据集上,用于性别和年龄亚组的∆mAUC 分别为 0.01(95%置信区间:0.01,0.01)和 0.05(95%置信区间:0.05,0.05)。

结论 使用 SCL 可以减轻胸部 X 线诊断中的偏差,解决了深度学习诊断方法中公平性和可靠性方面的问题。

胸、诊断、监督学习、卷积神经网络(CNN)、计算机辅助诊断(CAD)

© RSNA,2024 本期杂志还包含 Johnson 的评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a82/11449211/f8b9b9b17ecb/ryai.230342.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验