De Los Reyes Andres, Tyrell Fanita A, Watts Ashley L, Asmundson Gordon J G
Comprehensive Assessment and Intervention Program, Department of Psychology, The University of Maryland at College Park, College Park, MD, United States.
Resilient Adaptation Across Culture and Context Lab, Department of Psychology, The University of Maryland at College Park, College Park, MD, United States.
Front Psychol. 2022 Aug 2;13:931296. doi: 10.3389/fpsyg.2022.931296. eCollection 2022.
On page 1 of his classic text, Millsap (2011) states, "Measurement invariance is built on the notion that a measuring device should function the same way across varied conditions, so long as those varied conditions are [emphasis added] to the attribute being measured." By construction, measurement invariance techniques require not only detecting varied conditions but also ruling out that these conditions inform our understanding of measured domains (i.e., conditions that do not contain ). In fact, measurement invariance techniques possess great utility when theory and research inform their application to specific, varied conditions (e.g., cultural, ethnic, or racial background of test respondents) that, if not detected, introduce measurement biases, and, thus, depress measurement validity (e.g., academic achievement and intelligence). Yet, we see emerging bodies of work where scholars have "put the cart before the horse" when it comes to measurement invariance, and they apply these techniques to varied conditions that, in fact, may reflect domain-relevant information. These bodies of work highlight a larger problem in measurement that likely cuts across many areas of scholarship. In one such area, youth mental health, researchers commonly encounter a set of conditions that nullify the use of measurement invariance, namely discrepancies between survey reports completed by multiple informants, such as parents, teachers, and youth themselves (i.e., ). In this paper, we provide an overview of conceptual, methodological, and measurement factors that should prevent researchers from applying measurement invariance techniques to detect informant discrepancies. Along the way, we cite evidence from the last 15 years indicating that informant discrepancies reflect domain-relevant information. We also apply this evidence to recent uses of measurement invariance techniques in youth mental health. Based on prior evidence, we highlight the implications of applying these techniques to multi-informant data, when the informant discrepancies observed within these data might reflect domain-relevant information. We close by calling for a moratorium on applying measurement invariance techniques to detect informant discrepancies in youth mental health assessments. In doing so, we describe how the state of the science would need to fundamentally "flip" to justify applying these techniques to detect informant discrepancies in this area of work.
米尔萨普(2011)在其经典著作的第1页指出:“测量不变性建立在这样一种观念之上,即测量工具在各种不同条件下应具有相同的功能,只要这些不同条件与所测量的属性相关[重点补充]。”从本质上讲,测量不变性技术不仅需要检测不同条件,还需要排除这些条件影响我们对测量领域的理解(即不包含的条件)。事实上,当理论和研究为测量不变性技术在特定的、不同的条件(如测试对象的文化、种族或民族背景)下的应用提供依据时,这些技术具有很大的实用性。如果不检测这些条件,就会引入测量偏差,从而降低测量效度(如学业成绩和智力)。然而,我们看到一些新兴的研究成果,学者们在测量不变性方面“本末倒置”,他们将这些技术应用于实际上可能反映领域相关信息的不同条件。这些研究成果凸显了测量中一个更大的问题,这个问题可能贯穿许多学术领域。在青少年心理健康这一领域,研究人员通常会遇到一系列使测量不变性无法使用的条件,即多个信息提供者(如父母、教师和青少年自身)完成的调查报告之间存在差异(即)。在本文中,我们概述了一些概念、方法和测量因素,这些因素应使研究人员避免应用测量不变性技术来检测信息提供者之间的差异。在此过程中,我们引用了过去15年的证据,表明信息提供者之间的差异反映了领域相关信息。我们还将这些证据应用于测量不变性技术在青少年心理健康方面的最新应用。基于先前的证据,我们强调了在这些数据中观察到的信息提供者差异可能反映领域相关信息时,将这些技术应用于多信息提供者数据的影响。最后,我们呼吁暂停在青少年心理健康评估中应用测量不变性技术来检测信息提供者之间的差异。在此过程中,我们描述了科学现状需要如何从根本上“转变”,才能证明在这一工作领域应用这些技术来检测信息提供者之间的差异是合理的。