Suppr超能文献

用于神经成像的组线性非高斯成分分析

Group linear non-Gaussian component analysis with applications to neuroimaging.

作者信息

Zhao Yuxuan, Matteson David S, Mostofsky Stewart H, Nebel Mary Beth, Risk Benjamin B

机构信息

Department of Statistics and Data Science, Cornell University, United States of America.

Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, United States of America.

出版信息

Comput Stat Data Anal. 2022 Jul;171. doi: 10.1016/j.csda.2022.107454. Epub 2022 Feb 22.

Abstract

Independent component analysis (ICA) is an unsupervised learning method popular in functional magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers in neurological disorders including autism spectrum disorder and dementia. However, current methods use a principal component analysis (PCA) step that may remove low-variance features. Linear non-Gaussian component analysis (LNGCA) enables simultaneous dimension reduction and feature estimation including low-variance features in single-subject fMRI. A group LNGCA model is proposed to extract group components shared by more than one subject. Unlike group ICA methods, this novel approach also estimates individual (subject-specific) components orthogonal to the group components. To determine the total number of components in each subject, a parametric resampling test is proposed that samples spatially correlated Gaussian noise to match the spatial dependence observed in data. In simulations, estimated group components achieve higher accuracy compared to group ICA. The method is applied to a resting-state fMRI study on autism spectrum disorder in 342 children (252 typically developing, 90 with autism), where the group signals include resting-state networks. The discovered group components appear to exhibit different levels of temporal engagement in autism versus typically developing children, as revealed using group LNGCA. This novel approach to matrix decomposition is a promising direction for feature detection in neuroimaging.

摘要

独立成分分析(ICA)是一种在功能磁共振成像(fMRI)中流行的无监督学习方法。组ICA已被用于在包括自闭症谱系障碍和痴呆症在内的神经疾病中寻找生物标志物。然而,当前方法使用主成分分析(PCA)步骤,这可能会去除低方差特征。线性非高斯成分分析(LNGCA)能够在单受试者fMRI中同时进行降维和特征估计,包括低方差特征。提出了一种组LNGCA模型来提取多个受试者共有的组成分。与组ICA方法不同,这种新方法还估计与组成分正交的个体(受试者特异性)成分。为了确定每个受试者中的成分总数,提出了一种参数重采样测试,该测试对空间相关的高斯噪声进行采样,以匹配在数据中观察到的空间依赖性。在模拟中,与组ICA相比,估计的组成分具有更高的准确性。该方法应用于对342名儿童(252名发育正常,90名患有自闭症)进行的自闭症谱系障碍静息态fMRI研究,其中组信号包括静息态网络。如使用组LNGCA所揭示的,发现的组成分在自闭症儿童与发育正常儿童中似乎表现出不同程度的时间参与度。这种新的矩阵分解方法是神经成像中特征检测的一个有前途的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d361/9390952/3a1f117e085d/nihms-1812434-f0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验