Suppr超能文献

“Cloudbuster”:一款基于Python的开源应用程序,用于对堆叠式生物成像样本进行三维重建和定量分析。

'Cloudbuster': a Python-based open source application for three-dimensional reconstruction and quantification of stacked biological imaging samples.

作者信息

Rohwedder A, Knipp S, Esteves F O, Hale M, Ketchen S E, Treanor D, Brüning-Richardson A

机构信息

Light Laboratories, School of Molecular and Cellular Biology, Faculty of Biological Sciences University of Leeds, Leeds, UK.

School of Applied Sciences, University of Huddersfield, Huddersfield, UK.

出版信息

Interface Focus. 2022 Aug 12;12(5):20220016. doi: 10.1098/rsfs.2022.0016. eCollection 2022 Oct 6.

Abstract

Three-dimensional (3D) spheroid cultures are generating increasing interest in cancer research, e.g. for the evaluation of pharmacological effects of novel small molecule inhibitors. This is mainly due to the fact that such 3D structures reflect physiological characteristics of tumours and the cellular microenvironments they reside in more faithfully than two-dimensional (2D) cell cultures; in addition, they allow the reduction of animal experiments while providing significantly relevant human-based models. Quantification of such organoid structures as well as the mainly slice-based acquisition and thus forced 2D representation of 3D spheroids provide a challenge for the interpretation of the associated generated data. Here, we provide a novel open-source workflow to reconstruct a 3D entity from slice-recorded microscopical images with or without treatment with anti-migratory small molecule inhibitors. This reconstruction produces distinct point clouds as basis for subsequent comparison of basic readout parameters using average computer processor, memory and graphics resources within an acceptable time frame. We were able to validate the usefulness of this workflow using 3D data generated by various imaging techniques, including -stacks from confocal microscopy and histochemically labelled spheroid sectioning, and demonstrate the possibility to accurately characterize inhibitor effects in great detail.

摘要

三维(3D)球体培养在癌症研究中越来越受到关注,例如用于评估新型小分子抑制剂的药理作用。这主要是因为这种3D结构比二维(2D)细胞培养更忠实地反映了肿瘤及其所处细胞微环境的生理特征;此外,它们在减少动物实验的同时提供了显著相关的基于人类的模型。对这种类器官结构的量化以及主要基于切片的采集,从而对3D球体进行强制二维表示,给相关生成数据的解释带来了挑战。在这里,我们提供了一种新颖的开源工作流程,用于从切片记录的显微镜图像重建3D实体,无论是否用抗迁移小分子抑制剂处理。这种重建产生独特的点云,作为后续在可接受的时间框架内使用普通计算机处理器、内存和图形资源比较基本读出参数的基础。我们能够使用各种成像技术生成的3D数据验证该工作流程的有用性,包括共聚焦显微镜的z-stack和组织化学标记的球体切片,并证明了详细准确地表征抑制剂作用的可能性。

相似文献

3
SpheroidAnalyseR-an online platform for analyzing data from 3D spheroids or organoids grown in 96-well plates.
J Biol Methods. 2022 Nov 23;9(4):e163. doi: 10.14440/jbm.2022.388. eCollection 2022.
5
High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
PLoS One. 2022 May 19;17(5):e0264241. doi: 10.1371/journal.pone.0264241. eCollection 2022.
7
2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.
Biochim Biophys Acta. 2014 Jan;1844(1 Pt A):117-37. doi: 10.1016/j.bbapap.2013.01.040. Epub 2013 Mar 4.
9
10
Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.
Methods Mol Biol. 2017;1612:417-431. doi: 10.1007/978-1-4939-7021-6_30.

引用本文的文献

本文引用的文献

2
A novel workflow for three-dimensional analysis of tumour cell migration.
Interface Focus. 2020 Apr 6;10(2):20190070. doi: 10.1098/rsfs.2019.0070. Epub 2020 Feb 14.
6
3D Cell Culture: An Introduction.
Methods Mol Biol. 2017;1612:1-11. doi: 10.1007/978-1-4939-7021-6_1.
7
3D tumor spheroids: an overview on the tools and techniques used for their analysis.
Biotechnol Adv. 2016 Dec;34(8):1427-1441. doi: 10.1016/j.biotechadv.2016.11.002. Epub 2016 Nov 11.
9
Effects of the GSK-3β inhibitor (2Z,3E)-6-bromoindirubin-3'-oxime upon ovarian cancer cells.
Tumour Biol. 2016 Apr;37(4):4857-64. doi: 10.1007/s13277-015-4344-8. Epub 2015 Nov 2.
10
High-content analysis of tumour cell invasion in three-dimensional spheroid assays.
Oncoscience. 2015 Jun 14;2(6):596-606. doi: 10.18632/oncoscience.171. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验