Suppr超能文献

利用机器学习实现左心室心脏磁共振成像中缺血性心肌瘢痕检测的自动化。

Automation of ischemic myocardial scar detection in cardiac magnetic resonance imaging of the left ventricle using machine learning.

作者信息

Udin Michael H, Ionita Ciprian N, Pokharel Saraswati, Sharma Umesh C

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228.

Canon Stroke and Vascular Research Center, Buffalo, NY 14203.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12033. doi: 10.1117/12.2612234. Epub 2022 Apr 4.

Abstract

PURPOSE

Machine learning techniques can be applied to cardiac magnetic resonance imaging (CMR) scans in order to differentiate patients with and without ischemic myocardial scarring (IMS). However, processing the image data in the CMR scans requires manual work that takes a significant amount of time and expertise. We propose to develop and test an AI method to automatically identify IMS in CMR scans to streamline processing and reduce time costs.

MATERIALS AND METHODS

CMR scans from 170 patients (138 IMS & 32 without IMS as identified by a clinical expert) were processed using a multistep automatic image data selection algorithm. This algorithm consisted of cropping, circle detection, and supervised machine learning to isolate focused left ventricle image data. We used a ResNet-50 convolutional neural network to evaluate manual vs. automatic selection of left ventricle image data through calculating accuracy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUROC).

RESULTS

The algorithm accuracy, sensitivity, specificity, F1 score, and AUROC were 80.6%, 85.6%, 73.7%, 83.0%, and 0.837, respectively, when identifying IMS using manually selected left ventricle image data. With automatic selection of left ventricle image data, the same parameters were 78.5%, 86.0%, 70.7%, 79.7%, and 0.848, respectively.

CONCLUSION

Our proposed automatic image data selection algorithm provides a promising alternative to manual selection when there are time and expertise limitations. Automatic image data selection may also prove to be an important and necessary step toward integration of machine learning diagnosis and prognosis in clinical workflows.

摘要

目的

机器学习技术可应用于心脏磁共振成像(CMR)扫描,以区分有无缺血性心肌瘢痕(IMS)的患者。然而,处理CMR扫描中的图像数据需要人工操作,这需要大量时间和专业知识。我们建议开发并测试一种人工智能方法,以自动识别CMR扫描中的IMS,从而简化处理过程并降低时间成本。

材料与方法

使用多步自动图像数据选择算法处理了170例患者的CMR扫描(临床专家确定其中138例有IMS,32例无IMS)。该算法包括裁剪、圆形检测和监督机器学习,以分离聚焦的左心室图像数据。我们使用ResNet-50卷积神经网络,通过计算准确率、灵敏度、特异性、F1分数和受试者工作特征曲线下面积(AUROC),来评估左心室图像数据的手动选择与自动选择。

结果

当使用手动选择的左心室图像数据识别IMS时,算法的准确率、灵敏度、特异性、F1分数和AUROC分别为80.6%、85.6%、73.7%、83.0%和0.837。对于自动选择的左心室图像数据,相同参数分别为78.5%、86.0%、70.7%、79.7%和0.848。

结论

我们提出的自动图像数据选择算法在存在时间和专业知识限制时,为手动选择提供了一种有前景的替代方法。自动图像数据选择也可能被证明是在临床工作流程中整合机器学习诊断和预后的重要且必要的一步。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验