文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种使用ResUNet对CT图像中的肝脏和肿瘤进行分割的深度学习方法。

A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet.

作者信息

Rahman Hameedur, Bukht Tanvir Fatima Naik, Imran Azhar, Tariq Junaid, Tu Shanshan, Alzahrani Abdulkareeem

机构信息

Department of Creative Technologies, Faculty of Computing & AI, Air University PAF Complex, Islamabad 44000, Pakistan.

Faculty of Information Technology, Beijing University of Technology, Beijing 100024, China.

出版信息

Bioengineering (Basel). 2022 Aug 5;9(8):368. doi: 10.3390/bioengineering9080368.


DOI:10.3390/bioengineering9080368
PMID:36004893
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9404984/
Abstract

According to the most recent estimates from global cancer statistics for 2020, liver cancer is the ninth most common cancer in women. Segmenting the liver is difficult, and segmenting the tumor from the liver adds some difficulty. After a sample of liver tissue is taken, imaging tests, such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US), are used to segment the liver and liver tumor. Due to overlapping intensity and variability in the position and shape of soft tissues, segmentation of the liver and tumor from computed abdominal tomography images based on shade gray or shapes is undesirable. This study proposed a more efficient method for segmenting liver and tumors from CT image volumes using a hybrid ResUNet model, combining the ResNet and UNet models to address this gap. The two overlapping models were primarily used in this study to segment the liver and for region of interest (ROI) assessment. Segmentation of the liver is done to examine the liver with an abdominal CT image volume. The proposed model is based on CT volume slices of patients with liver tumors and evaluated on the public 3D dataset IRCADB01. Based on the experimental analysis, the true value accuracy for liver segmentation was found to be approximately 99.55%, 97.85%, and 98.16%. The authentication rate of the dice coefficient also increased, indicating that the experiment went well and that the model is ready to use for the detection of liver tumors.

摘要

根据《2020年全球癌症统计数据》的最新估计,肝癌是女性中第九大常见癌症。肝脏分割难度较大,而从肝脏中分割出肿瘤则更具挑战性。在获取肝脏组织样本后,会使用磁共振成像(MRI)、计算机断层扫描(CT)和超声(US)等成像测试来分割肝脏和肝肿瘤。由于软组织的强度重叠以及位置和形状的变化,基于灰度或形状从腹部计算机断层扫描图像中分割肝脏和肿瘤并不理想。本研究提出了一种使用混合ResUNet模型从CT图像体积中分割肝脏和肿瘤的更有效方法,该模型结合了ResNet和UNet模型来弥补这一差距。本研究主要使用这两个重叠模型来分割肝脏并进行感兴趣区域(ROI)评估。通过腹部CT图像体积对肝脏进行分割,以检查肝脏情况。所提出的模型基于肝肿瘤患者的CT体积切片,并在公共3D数据集IRCADB01上进行评估。基于实验分析,发现肝脏分割的真值准确率分别约为99.55%、97.85%和98.16%。骰子系数的验证率也有所提高,表明实验进展顺利,该模型已可用于肝肿瘤检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/efe70b828f47/bioengineering-09-00368-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/bf0aada19f47/bioengineering-09-00368-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/4a55bd86855f/bioengineering-09-00368-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/b01154805bc6/bioengineering-09-00368-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/6790a5866b06/bioengineering-09-00368-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/4584b5ed0c4a/bioengineering-09-00368-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/07898cd2d49e/bioengineering-09-00368-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/70bce021b8b4/bioengineering-09-00368-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/8dec1001ec66/bioengineering-09-00368-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/2e6463c74ccd/bioengineering-09-00368-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/93646295b893/bioengineering-09-00368-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/6b750bd82675/bioengineering-09-00368-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/c3ff0f16da74/bioengineering-09-00368-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/876006d294a9/bioengineering-09-00368-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/b024ab1b833f/bioengineering-09-00368-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/889131b7214f/bioengineering-09-00368-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/fb7e4f8e2d20/bioengineering-09-00368-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/fa84038938ee/bioengineering-09-00368-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/35627f194085/bioengineering-09-00368-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/abbef86c9e02/bioengineering-09-00368-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/efe70b828f47/bioengineering-09-00368-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/bf0aada19f47/bioengineering-09-00368-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/4a55bd86855f/bioengineering-09-00368-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/b01154805bc6/bioengineering-09-00368-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/6790a5866b06/bioengineering-09-00368-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/4584b5ed0c4a/bioengineering-09-00368-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/07898cd2d49e/bioengineering-09-00368-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/70bce021b8b4/bioengineering-09-00368-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/8dec1001ec66/bioengineering-09-00368-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/2e6463c74ccd/bioengineering-09-00368-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/93646295b893/bioengineering-09-00368-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/6b750bd82675/bioengineering-09-00368-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/c3ff0f16da74/bioengineering-09-00368-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/876006d294a9/bioengineering-09-00368-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/b024ab1b833f/bioengineering-09-00368-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/889131b7214f/bioengineering-09-00368-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/fb7e4f8e2d20/bioengineering-09-00368-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/fa84038938ee/bioengineering-09-00368-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/35627f194085/bioengineering-09-00368-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/abbef86c9e02/bioengineering-09-00368-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9404984/efe70b828f47/bioengineering-09-00368-g020.jpg

相似文献

[1]
A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet.

Bioengineering (Basel). 2022-8-5

[2]
Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images.

Comput Methods Programs Biomed. 2022-7

[3]
A novel Gateaux derivatives with efficient DCNN-Resunet method for segmenting multi-class brain tumor.

Med Biol Eng Comput. 2023-8

[4]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[5]
Attention-VGG16-UNet: a novel deep learning approach for automatic segmentation of the median nerve in ultrasound images.

Quant Imaging Med Surg. 2022-6

[6]
COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet.

Int J Imaging Syst Technol. 2023-1

[7]
Automatic segmentation of large-scale CT image datasets for detailed body composition analysis.

BMC Bioinformatics. 2023-9-18

[8]
Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method.

BMC Biomed Eng. 2021-3-1

[9]
HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.

Comput Methods Programs Biomed. 2022-1

[10]
PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images.

Med Phys. 2021-7

引用本文的文献

[1]
Automatic Real-Time Detection and Diagnosis of Liver Tumor with Ultrasound.

J Hepatocell Carcinoma. 2025-7-23

[2]
FSS-ULivR: a clinically-inspired few-shot segmentation framework for liver imaging using unified representations and attention mechanisms.

J Cancer Res Clin Oncol. 2025-7-17

[3]
Enhanced abdominal multi-organ segmentation with 3D UNet and UNet +  + deep neural networks utilizing the MONAI framework.

Abdom Radiol (NY). 2025-6-30

[4]
[SG-UNet: a melanoma segmentation model enhanced with global attention and self-calibrated convolution].

Nan Fang Yi Ke Da Xue Xue Bao. 2025-6-20

[5]
Liver Semantic Segmentation Method Based on Multi-Channel Feature Extraction and Cross Fusion.

Bioengineering (Basel). 2025-6-11

[6]
A strategy for the automatic diagnostic pipeline towards feature-based models: a primer with pleural invasion prediction from preoperative PET/CT images.

EJNMMI Res. 2025-6-12

[7]
Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives.

J Pers Med. 2025-4-27

[8]
Developments in Deep Learning Artificial Neural Network Techniques for Medical Image Analysis and Interpretation.

Diagnostics (Basel). 2025-4-23

[9]
SwinDAF3D: Pyramid Swin Transformers with Deep Attentive Features for Automated Finger Joint Segmentation in 3D Ultrasound Images for Rheumatoid Arthritis Assessment.

Bioengineering (Basel). 2025-4-5

[10]
Automatic computed tomography image segmentation method for liver tumor based on a modified tokenized multilayer perceptron and attention mechanism.

Quant Imaging Med Surg. 2025-3-3

本文引用的文献

[1]
Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks.

J Digit Imaging. 2019-6

[2]
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes.

IEEE Trans Med Imaging. 2018-6-11

[3]
Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.

Radiology. 2017-10-23

[4]
Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs.

Artif Intell Med. 2017-3-27

[5]
MRI segmentation of the human brain: challenges, methods, and applications.

Comput Math Methods Med. 2015

[6]
Segmentation of liver, its vessels and lesions from CT images for surgical planning.

Biomed Eng Online. 2011-4-20

[7]
Fully automatic liver segmentation through graph-cut technique.

Annu Int Conf IEEE Eng Med Biol Soc. 2007

[8]
Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery.

Comput Aided Surg. 2001

[9]
Current methods in medical image segmentation.

Annu Rev Biomed Eng. 2000

[10]
An automatic diagnostic system for CT liver image classification.

IEEE Trans Biomed Eng. 1998-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索