Suppr超能文献

基于卷积与注意力机制的医学细胞核图像分割网络

[Medical nucleus image segmentation network based on convolution and attention mechanism].

作者信息

Zhi Peipei, Deng Jianzhi, Zhong Zhenxiao

机构信息

School of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China.

Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Aug 25;39(4):730-739. doi: 10.7507/1001-5515.202112013.

Abstract

Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.

摘要

尽管深度学习在细胞核分割中发挥着重要作用,但在病理诊断中仍面临着难以提取细微特征以及细胞核边缘模糊等问题。针对上述问题,提出了一种结合注意力机制的细胞核分割网络。该网络以UNet网络作为基本结构,采用深度可分离残差(DSRC)模块进行特征编码,以避免丢失细胞核的边界信息。特征解码采用坐标注意力(CA)来增强特征空间中的远距离信息,并突出细胞核位置的关键信息。最后,语义信息融合(SIF)模块整合深浅层特征以提高分割效果。实验在2018年数据科学碗(DSB2018)数据集和三阴性乳腺癌(TNBC)数据集上进行。对于这两个数据集,所提方法的准确率分别为92.01%和89.80%,灵敏度分别为90.09%和91.10%,平均交并比分别为89.01%和89.12%。实验结果表明,所提方法能够有效地分割细胞核的细微区域,提高分割精度,为临床诊断提供可靠依据。

相似文献

4
RTC_TongueNet: An improved tongue image segmentation model based on DeepLabV3.RTC_TongueNet:一种基于DeepLabV3的改进型舌图像分割模型。
Digit Health. 2024 Mar 28;10:20552076241242773. doi: 10.1177/20552076241242773. eCollection 2024 Jan-Dec.
6
GA-Net: Ghost convolution adaptive fusion skin lesion segmentation network.GA-Net:幽灵卷积自适应融合皮肤病变分割网络。
Comput Biol Med. 2023 Sep;164:107273. doi: 10.1016/j.compbiomed.2023.107273. Epub 2023 Jul 27.
8
GC-Net: Global context network for medical image segmentation.GC-Net:用于医学图像分割的全局上下文网络。
Comput Methods Programs Biomed. 2020 Jul;190:105121. doi: 10.1016/j.cmpb.2019.105121. Epub 2019 Oct 4.

本文引用的文献

4
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.跨影像实验的核分割:2018 年数据科学竞赛
Nat Methods. 2019 Dec;16(12):1247-1253. doi: 10.1038/s41592-019-0612-7. Epub 2019 Oct 21.
6
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验