Suppr超能文献

基于多任务和注意力机制的胰腺癌全切片图像多组织分割模型

[Multi-tissue segmentation model of whole slide image of pancreatic cancer based on multi task and attention mechanism].

作者信息

Gao Wei, Jiang Hui, Jiao Yiping, Wang Xiangxue, Xu Jun

机构信息

Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China.

Department of Pathology, Changhai Hospital Affiliated to Navy Medical University, Shanghai 200433. P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):70-78. doi: 10.7507/1001-5515.202211003.

Abstract

Accurate segmentation of whole slide images is of great significance for the diagnosis of pancreatic cancer. However, developing an automatic model is challenging due to the complex content, limited samples, and high sample heterogeneity of pathological images. This paper presented a multi-tissue segmentation model for whole slide images of pancreatic cancer. We introduced an attention mechanism in building blocks, and designed a multi-task learning framework as well as proper auxiliary tasks to enhance model performance. The model was trained and tested with the pancreatic cancer pathological image dataset from Shanghai Changhai Hospital. And the data of TCGA, as an external independent validation cohort, was used for external validation. The F1 scores of the model exceeded 0.97 and 0.92 in the internal dataset and external dataset, respectively. Moreover, the generalization performance was also better than the baseline method significantly. These results demonstrate that the proposed model can accurately segment eight kinds of tissue regions in whole slide images of pancreatic cancer, which can provide reliable basis for clinical diagnosis.

摘要

全切片图像的准确分割对于胰腺癌的诊断具有重要意义。然而,由于病理图像内容复杂、样本有限以及样本异质性高,开发自动模型具有挑战性。本文提出了一种用于胰腺癌全切片图像的多组织分割模型。我们在构建模块中引入了注意力机制,并设计了多任务学习框架以及适当的辅助任务来提高模型性能。该模型使用上海长海医院的胰腺癌病理图像数据集进行训练和测试。并将TCGA的数据作为外部独立验证队列用于外部验证。该模型在内部数据集和外部数据集上的F1分数分别超过0.97和0.92。此外,泛化性能也明显优于基线方法。这些结果表明,所提出的模型能够准确分割胰腺癌全切片图像中的八种组织区域,可为临床诊断提供可靠依据。

相似文献

本文引用的文献

3
7
Regulation of tumor microenvironment for pancreatic cancer therapy.调控肿瘤微环境用于胰腺癌治疗。
Biomaterials. 2021 Mar;270:120680. doi: 10.1016/j.biomaterials.2021.120680. Epub 2021 Jan 22.
10
Deep Learning in Microscopy Image Analysis: A Survey.深度学习在显微镜图像分析中的应用:综述。
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4550-4568. doi: 10.1109/TNNLS.2017.2766168. Epub 2017 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验