Suppr超能文献

U-Net在钆塞酸二钠增强肝脏MRI中对不连续纤维化分布进行地图状分割和分类的应用

Application of A U-Net for Map-like Segmentation and Classification of Discontinuous Fibrosis Distribution in Gd-EOB-DTPA-Enhanced Liver MRI.

作者信息

Strotzer Quirin David, Winther Hinrich, Utpatel Kirsten, Scheiter Alexander, Fellner Claudia, Doppler Michael Christian, Ringe Kristina Imeen, Raab Florian, Haimerl Michael, Uller Wibke, Stroszczynski Christian, Luerken Lukas, Verloh Niklas

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Regensburg, 93053 Regensburg, Germany.

Department of Diagnostic and Interventional Radiology, Hannover University Medical Center, 30625 Hannover, Germany.

出版信息

Diagnostics (Basel). 2022 Aug 11;12(8):1938. doi: 10.3390/diagnostics12081938.

Abstract

We aimed to evaluate whether U-shaped convolutional neuronal networks can be used to segment liver parenchyma and indicate the degree of liver fibrosis/cirrhosis at the voxel level using contrast-enhanced magnetic resonance imaging. This retrospective study included 112 examinations with histologically determined liver fibrosis/cirrhosis grade (Ishak score) as the ground truth. The T1-weighted volume-interpolated breath-hold examination sequences of native, arterial, late arterial, portal venous, and hepatobiliary phases were semi-automatically segmented and co-registered. The segmentations were assigned the corresponding Ishak score. In a nested cross-validation procedure, five models of a convolutional neural network with U-Net architecture (nnU-Net) were trained, with the dataset being divided into stratified training/validation ( = 89/90) and holdout test datasets ( = 23/22). The trained models precisely segmented the test data (mean dice similarity coefficient = 0.938) and assigned separate fibrosis scores to each voxel, allowing localization-dependent determination of the degree of fibrosis. The per voxel results were evaluated by the histologically determined fibrosis score. The micro-average area under the receiver operating characteristic curve of this seven-class classification problem (Ishak score 0 to 6) was 0.752 for the test data. The top-three-accuracy-score was 0.750. We conclude that determining fibrosis grade or cirrhosis based on multiphase Gd-EOB-DTPA-enhanced liver MRI seems feasible using a 2D U-Net. Prospective studies with localized biopsies are needed to evaluate the reliability of this model in a clinical setting.

摘要

我们旨在评估U型卷积神经网络是否可用于分割肝实质,并使用对比增强磁共振成像在体素水平指示肝纤维化/肝硬化的程度。这项回顾性研究纳入了112例检查,以组织学确定的肝纤维化/肝硬化分级(Ishak评分)作为金标准。对平扫、动脉期、动脉晚期、门静脉期和肝胆期的T1加权容积内插屏气检查序列进行半自动分割和配准。分割结果被赋予相应的Ishak评分。在嵌套交叉验证过程中,训练了五个具有U-Net架构的卷积神经网络模型(nnU-Net),数据集被分为分层训练/验证集( = 89/90)和保留测试数据集( = 23/22)。训练后的模型精确分割了测试数据(平均骰子相似系数 = 0.938),并为每个体素分配单独的纤维化评分,从而能够根据位置确定纤维化程度。每个体素的结果通过组织学确定的纤维化评分进行评估。对于这个七分类问题(Ishak评分0至6),测试数据的接收器操作特征曲线下的微平均面积为0.752。前三准确率分数为0.750。我们得出结论,使用二维U-Net基于多期Gd-EOB-DTPA增强肝脏MRI确定纤维化分级或肝硬化似乎是可行的。需要进行局部活检的前瞻性研究来评估该模型在临床环境中的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7077/9406317/68be5e67a0d6/diagnostics-12-01938-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验