Suppr超能文献

基于概率生成模型的多主体大脑解码视觉信息估计。

Brain Decoding of Multiple Subjects for Estimating Visual Information Based on a Probabilistic Generative Model.

机构信息

Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.

Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.

出版信息

Sensors (Basel). 2022 Aug 17;22(16):6148. doi: 10.3390/s22166148.

Abstract

Brain decoding is a process of decoding human cognitive contents from brain activities. However, improving the accuracy of brain decoding remains difficult due to the unique characteristics of the brain, such as the small sample size and high dimensionality of brain activities. Therefore, this paper proposes a method that effectively uses multi-subject brain activities to improve brain decoding accuracy. Specifically, we distinguish between the shared information common to multi-subject brain activities and the individual information based on each subject's brain activities, and both types of information are used to decode human visual cognition. Both types of information are extracted as features belonging to a latent space using a probabilistic generative model. In the experiment, an publicly available dataset and five subjects were used, and the estimation accuracy was validated on the basis of a confidence score ranging from 0 to 1, and a large value indicates superiority. The proposed method achieved a confidence score of 0.867 for the best subject and an average of 0.813 for the five subjects, which was the best compared to other methods. The experimental results show that the proposed method can accurately decode visual cognition compared with other existing methods in which the shared information is not distinguished from the individual information.

摘要

脑解码是从大脑活动中解码人类认知内容的过程。然而,由于大脑的独特特征,如大脑活动的小样本量和高维性,提高脑解码的准确性仍然很困难。因此,本文提出了一种有效利用多主体大脑活动来提高脑解码准确性的方法。具体来说,我们根据每个主体的大脑活动区分多主体大脑活动中共同的共享信息和个体信息,并利用这两种信息来解码人类的视觉认知。使用概率生成模型将这两种信息分别提取为属于潜在空间的特征。在实验中,我们使用了一个公开可用的数据集和五个主体,并基于置信分数(范围从 0 到 1)验证了估计的准确性,分数越大表示优势越大。所提出的方法在最佳主体上获得了 0.867 的置信分数,在五个主体上的平均置信分数为 0.813,与其他方法相比,这是最好的。实验结果表明,与其他不区分共享信息和个体信息的现有方法相比,所提出的方法可以更准确地解码视觉认知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d61/9416613/c2770fd62429/sensors-22-06148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验