Suppr超能文献

在全球南方地区,利用负责任、可解释且本地化的人工智能解决方案促进临床公共卫生。

Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South.

作者信息

Kong Jude Dzevela, Akpudo Ugochukwu Ejike, Effoduh Jake Okechukwu, Bragazzi Nicola Luigi

机构信息

Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada.

Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), York University, Toronto, ON M3J 1P3, Canada.

出版信息

Healthcare (Basel). 2023 Feb 4;11(4):457. doi: 10.3390/healthcare11040457.

Abstract

In the present paper, we will explore how artificial intelligence (AI) and big data analytics (BDA) can help address clinical public and global health needs in the Global South, leveraging and capitalizing on our experience with the "Africa-Canada Artificial Intelligence and Data Innovation Consortium" (ACADIC) Project in the Global South, and focusing on the ethical and regulatory challenges we had to face. "Clinical public health" can be defined as an interdisciplinary field, at the intersection of clinical medicine and public health, whilst "clinical global health" is the practice of clinical public health with a special focus on health issue management in resource-limited settings and contexts, including the Global South. As such, clinical public and global health represent vital approaches, instrumental in (i) applying a community/population perspective to clinical practice as well as a clinical lens to community/population health, (ii) identifying health needs both at the individual and community/population levels, (iii) systematically addressing the determinants of health, including the social and structural ones, (iv) reaching the goals of population's health and well-being, especially of socially vulnerable, underserved communities, (v) better coordinating and integrating the delivery of healthcare provisions, (vi) strengthening health promotion, health protection, and health equity, and (vii) closing gender inequality and other (ethnic and socio-economic) disparities and gaps. Clinical public and global health are called to respond to the more pressing healthcare needs and challenges of our contemporary society, for which AI and BDA can help unlock new options and perspectives. In the aftermath of the still ongoing COVID-19 pandemic, the future trend of AI and BDA in the healthcare field will be devoted to building a more healthy, resilient society, able to face several challenges arising from globally networked hyper-risks, including ageing, multimorbidity, chronic disease accumulation, and climate change.

摘要

在本论文中,我们将探讨人工智能(AI)和大数据分析(BDA)如何助力满足全球南方地区的临床公共卫生和全球卫生需求,充分利用我们在全球南方地区开展的“非洲 - 加拿大人工智能与数据创新联盟”(ACADIC)项目的经验,并重点关注我们必须面对的伦理和监管挑战。“临床公共卫生”可定义为一个跨学科领域,处于临床医学与公共卫生的交叉点,而“临床全球卫生”则是临床公共卫生的实践,特别关注资源有限环境和背景下的卫生问题管理,包括全球南方地区。因此,临床公共卫生和全球卫生代表着至关重要的方法,有助于:(i)将社区/人群视角应用于临床实践,并将临床视角应用于社区/人群健康;(ii)识别个体以及社区/人群层面的卫生需求;(iii)系统地解决健康的决定因素,包括社会和结构因素;(iv)实现人群健康和福祉的目标,尤其是社会弱势群体、服务不足社区的目标;(v)更好地协调和整合医疗服务的提供;(vi)加强健康促进、健康保护和健康公平;(vii)消除性别不平等以及其他(种族和社会经济)差距。临床公共卫生和全球卫生需要应对当代社会更为紧迫的医疗保健需求和挑战,人工智能和大数据分析能够帮助开启新的选择和视角。在仍在持续的新冠疫情之后,人工智能和大数据分析在医疗保健领域的未来趋势将致力于构建一个更健康、更具韧性的社会,使其能够应对全球网络超风险带来的诸多挑战,包括老龄化、多种疾病并存、慢性病积累以及气候变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7c/9956248/894cbea9fe4a/healthcare-11-00457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验