Bryan J Shepard, Basak Prithviraj, Bechhoefer John, Pressé Steve
Department of Physics, Arizona State University, Tempe, AZ, USA.
Department of Physics, Simon Fraser University, Burnaby, BC, USA.
iScience. 2022 Jul 19;25(9):104731. doi: 10.1016/j.isci.2022.104731. eCollection 2022 Sep 16.
While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle's position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We develop a Bayesian method to infer potentials from trajectories corrupted by Markovian measurement noise without assuming prior functional form on the potentials. As an alternative to Gaussian process priors over potentials, we introduce structured kernel interpolation to the Natural Sciences which allows us to extend our analysis to large datasets. Structured-Kernel-Interpolation Priors for Potential Energy Reconstruction (SKIPPER) is validated on 1D and 2D experimental trajectories for particles in a feedback trap.
虽然粒子轨迹编码了其控制势的信息,但从轨迹中稳健地提取势可能具有挑战性。测量误差可能会破坏粒子的位置,并且势的稀疏采样限制了高能区域(如势垒)的数据。我们开发了一种贝叶斯方法,用于从受马尔可夫测量噪声影响的轨迹中推断势,而无需对势假设先验函数形式。作为势的高斯过程先验的替代方法,我们将结构化核插值引入自然科学领域,这使我们能够将分析扩展到大型数据集。用于势能重建的结构化核插值先验(SKIPPER)在反馈阱中粒子的一维和二维实验轨迹上得到了验证。