Suppr超能文献

从光反馈阱内粒子的噪声轨迹推断势能面。

Inferring potential landscapes from noisy trajectories of particles within an optical feedback trap.

作者信息

Bryan J Shepard, Basak Prithviraj, Bechhoefer John, Pressé Steve

机构信息

Department of Physics, Arizona State University, Tempe, AZ, USA.

Department of Physics, Simon Fraser University, Burnaby, BC, USA.

出版信息

iScience. 2022 Jul 19;25(9):104731. doi: 10.1016/j.isci.2022.104731. eCollection 2022 Sep 16.

Abstract

While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle's position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We develop a Bayesian method to infer potentials from trajectories corrupted by Markovian measurement noise without assuming prior functional form on the potentials. As an alternative to Gaussian process priors over potentials, we introduce structured kernel interpolation to the Natural Sciences which allows us to extend our analysis to large datasets. Structured-Kernel-Interpolation Priors for Potential Energy Reconstruction (SKIPPER) is validated on 1D and 2D experimental trajectories for particles in a feedback trap.

摘要

虽然粒子轨迹编码了其控制势的信息,但从轨迹中稳健地提取势可能具有挑战性。测量误差可能会破坏粒子的位置,并且势的稀疏采样限制了高能区域(如势垒)的数据。我们开发了一种贝叶斯方法,用于从受马尔可夫测量噪声影响的轨迹中推断势,而无需对势假设先验函数形式。作为势的高斯过程先验的替代方法,我们将结构化核插值引入自然科学领域,这使我们能够将分析扩展到大型数据集。用于势能重建的结构化核插值先验(SKIPPER)在反馈阱中粒子的一维和二维实验轨迹上得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c6/9400092/47b512061e60/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验