Suppr超能文献

设计一种基于人工智能决策的新型快速解决方案,用于控制医院的隔离病房。

Designing a new fast solution to control isolation rooms in hospitals depending on artificial intelligence decision.

作者信息

Khaled Ahmed S, Mohammed Ali R, Maha Lashin M, Fayroz Sherif F

机构信息

Department of Electrical Engineering, Faculty of Engineering, Benha University, Egypt.

Faculty of Engineering and Technology, Future University, Cairo, Egypt.

出版信息

Biomed Signal Process Control. 2023 Jan;79:104100. doi: 10.1016/j.bspc.2022.104100. Epub 2022 Aug 26.

Abstract

Decreasing the COVID spread of infection among patients at physical isolation hospitals during the coronavirus pandemic was the main aim of all governments in the world. It was required to increase isolation places in the hospital's rules to prevent the spread of infection. To deal with influxes of infected COVID-19 patients' quick solutions must be explored. The presented paper studies converting natural rooms in hospitals into isolation sections and constructing new isolation cabinets using prefabricated components as alternative and quick solutions. Artificial Intelligence (AI) helps in the selection and making of a decision on which type of solution will be used. A Multi-Layer Perceptron Neural Network (MLPNN) model is a type of artificial intelligence technique used to design and implement on time, cost, available facilities, area, and spaces as input parameters. The MLPNN result decided to select a prefabricated approach since it saves 43% of the time while the cost was the same for the two approaches. Forty-five hospitals have implemented a prefabricated solution which gave excellent results in a short period of time at reduced costs based on found facilities and spaces. Prefabricated solutions provide a shorter time and lower cost by 43% and 78% in average values respectively as compared to retrofitting existing natural ventilation rooms.

摘要

在新冠疫情期间,减少实体隔离医院中患者之间新冠病毒感染的传播是世界各国政府的主要目标。根据医院规定,需要增加隔离场所以防止感染传播。为应对新冠病毒感染患者的大量涌入,必须探索快速解决方案。本文研究将医院的自然房间改造成隔离区,并使用预制构件建造新的隔离柜作为替代的快速解决方案。人工智能(AI)有助于选择并决定采用哪种类型的解决方案。多层感知器神经网络(MLPNN)模型是一种人工智能技术,用于以时间、成本、可用设施、面积和空间作为输入参数进行设计和实施。MLPNN的结果决定选择预制方法,因为它节省了43%的时间,而两种方法的成本相同。45家医院采用了预制解决方案,基于现有的设施和空间,在短时间内以降低的成本取得了优异的效果。与改造现有的自然通风房间相比,预制解决方案平均分别节省43%的时间和78%的成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6875/9412665/8c972a94d56e/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验