Suppr超能文献

一种基于深度去噪自编码器隐藏特征的新型无监督方法用于新冠疾病检测。

A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection.

作者信息

Scarpiniti Michele, Sarv Ahrabi Sima, Baccarelli Enzo, Piazzo Lorenzo, Momenzadeh Alireza

机构信息

Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.

出版信息

Expert Syst Appl. 2022 Apr 15;192:116366. doi: 10.1016/j.eswa.2021.116366. Epub 2021 Dec 16.

Abstract

Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost.

摘要

胸部成像可成为检测2019冠状病毒病(COVID-19)的有力工具。在现有技术中,胸部计算机断层扫描(CT)是可靠且早期检测该疾病的有效方法。然而,通过人工检查在属于COVID-19疾病的CT图像中快速识别异常区域可能很困难。因此,有必要利用合适的自动算法来快速准确地识别该疾病,可能只需使用少量带标签的输入数据,因为通常没有大量的CT扫描数据可用于COVID-19疾病。本文提出的方法基于利用深度去噪卷积自动编码器(DDCAE)提供的紧凑且有意义的隐藏表示。具体而言,所提出的DDCAE以无监督方式在一些目标CT扫描上进行训练,用于构建一个强大的统计表示并生成目标直方图。一种合适的统计距离衡量该目标直方图与在未知测试扫描上评估的伴随直方图的差异程度:如果该距离大于阈值,则将测试图像标记为异常,即该扫描属于受COVID-19疾病影响的患者。一些实验结果以及与其他现有方法的比较表明,所提出的方法有效,最高准确率达到100%,其他指标也有类似的高值。总之,通过使用DDCAE提供的隐藏特征的统计表示,所开发的架构能够以高可靠性和低计算成本将COVID-19与正常和肺炎扫描区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dbe/8675154/69fa2baf9239/gr5_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验