Suppr超能文献

利用裁剪图片法自动检测运动相机图像中的外来植物物种及公民科学的潜力。

Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science.

作者信息

Takaya Kosuke, Sasaki Yu, Ise Takeshi

机构信息

Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

出版信息

Breed Sci. 2022 Mar;72(1):96-106. doi: 10.1270/jsbbs.21062. Epub 2022 Feb 5.

Abstract

Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.

摘要

监测和检测外来入侵植物物种对于有效的管理和控制措施至关重要。尽管已经努力利用卫星图像检测外来树木,但检测外来草本物种一直很困难。在本研究中,我们探讨了使用深度学习对两台运动相机拍摄的图像进行非本地植物检测的可能性。我们使用裁剪图片法为每台相机创建了一个模型。这些模型能够检测外来植物(高一枝黄花),平均准确率达到89%。本研究证明,通过深度学习利用廉价的运动相机自动检测外来植物是可行的。这一进展表明,未来公民科学可能有助于以低成本在广大区域开展外来植物分布调查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e18/8987844/6cfdb89a78e6/72_096-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验