Suppr超能文献

基于深度学习的盆腔恶性肿瘤选择性淋巴结区域勾画的高效应用。

Efficient application of deep learning-based elective lymph node regions delineation for pelvic malignancies.

机构信息

Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

Med-X Center for Informatics, Sichuan University, Chengdu, China.

出版信息

Med Phys. 2024 Oct;51(10):7057-7066. doi: 10.1002/mp.17330. Epub 2024 Jul 27.

Abstract

BACKGROUND

While there are established international consensuses on the delineation of pelvic lymph node regions (LNRs), significant inter- and intra-observer variabilities persist. Contouring these clinical target volumes for irradiation in pelvic malignancies is both time-consuming and labor-intensive.

PURPOSE

The purpose of this study was to develop a deep learning model of pelvic LNRs delineation for patients with pelvic cancers.

METHODS

Planning computed tomography (CT) studies of 160 patients with pelvic primary malignancies (including rectal, prostate, and cervical cancer) were retrospectively collected and divided into training set (n = 120) and testing set (n = 40). Six pelvic LNRs, including abdominal presacral, pelvic presacral, internal iliac nodes, external iliac nodes, obturator nodes, and inguinal nodes were delineated by two radiation oncologists as ground truth (Gt) contours. The cascaded multi-heads U-net (CMU-net) was constructed based on the Gt contours from training cohort, which was subsequently verified in the testing cohort. The automatic delineation of six LNRs (Auto) was evaluated using dice similarity coefficient (DSC), average surface distance (ASD), 95th percentile Hausdorff distance (HD95), and a 7-point scale score.

RESULTS

In the testing set, the DSC of six pelvic LNRs by CMU-net model varied from 0.851 to 0.942, ASD from 0.381 to 1.037 mm, and HD95 from 2.025 to 3.697 mm. No significant differences were founded in these three parameters between postoperative and preoperative cases. 95.9% and 96.2% of auto delineations by CMU-net model got a score of 1-3 by two expert radiation oncologists, respectively, meaning only minor edits needed.

CONCLUSIONS

The CMU-net was successfully developed for automated delineation of pelvic LNRs for pelvic malignancies radiotherapy with improved contouring efficiency and highly consistent, which might justify its implementation in radiotherapy work flow.

摘要

背景

虽然已经有关于盆腔淋巴结区域(LNRs)划定的国际共识,但仍存在显著的观察者间和观察者内差异。勾画这些临床靶区进行盆腔恶性肿瘤放疗既费时又费力。

目的

本研究旨在为盆腔恶性肿瘤患者开发一种用于勾画盆腔 LNR 的深度学习模型。

方法

回顾性收集了 160 例盆腔原发性恶性肿瘤(包括直肠癌、前列腺癌和宫颈癌)患者的计划计算机断层扫描(CT)研究,并将其分为训练集(n=120)和测试集(n=40)。由两位放射肿瘤学家分别对 6 个盆腔 LNR(包括腹部骶前、盆腔骶前、髂内淋巴结、髂外淋巴结、闭孔淋巴结和腹股沟淋巴结)进行勾画作为真实(Gt)轮廓。基于训练队列的 Gt 轮廓构建级联多头 U 型网络(CMU-net),并在测试队列中进行验证。使用 Dice 相似系数(DSC)、平均表面距离(ASD)、95%Hausdorff 距离(HD95)和 7 分制评分评估 6 个 LNR 的自动勾画(Auto)。

结果

在测试集中,CMU-net 模型勾画的 6 个盆腔 LNR 的 DSC 从 0.851 到 0.942,ASD 从 0.381 到 1.037mm,HD95 从 2.025 到 3.697mm。在术后和术前病例中,这三个参数之间没有显著差异。CMU-net 模型勾画的 95.9%和 96.2%的自动勾画由两位专家放射肿瘤学家分别获得 1-3 分,这意味着仅需要进行少量修改。

结论

CMU-net 成功地开发用于自动勾画盆腔恶性肿瘤放疗的盆腔 LNR,提高了勾画效率和高度一致性,这可能证明其在放疗工作流程中的实施是合理的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验