Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA.
Electrical Engineering Department, The Cooper Union, New York, USA.
Genome Biol. 2022 Sep 1;23(1):184. doi: 10.1186/s13059-022-02738-3.
Out of the thousands of metabolites in a given specimen, most metabolomics experiments measure only hundreds, with poor overlap across experimental platforms. Here, we describe Metabolite Imputation via Rank-Transformation and Harmonization (MIRTH), a method to impute unmeasured metabolite abundances by jointly modeling metabolite covariation across datasets which have heterogeneous coverage of metabolite features. MIRTH successfully recovers masked metabolite abundances both within single datasets and across multiple, independently-profiled datasets. MIRTH demonstrates that latent information about otherwise unmeasured metabolites is embedded within existing metabolomics data, and can be used to generate novel hypotheses and simplify existing metabolomic workflows.
在给定样本中的数千种代谢物中,大多数代谢组学实验仅测量数百种,并且在实验平台之间的重叠性很差。在这里,我们描述了通过秩变换和协调进行代谢物推断的方法(MIRTH),这是一种通过联合建模跨数据集的代谢物协变来推断未测量的代谢物丰度的方法,这些数据集具有代谢物特征的异质覆盖。MIRTH 成功地恢复了单个数据集和多个独立分析数据集内的掩蔽代谢物丰度。MIRTH 表明,关于其他未测量代谢物的潜在信息嵌入在现有代谢组学数据中,可用于生成新的假设并简化现有的代谢组学工作流程。