Suppr超能文献

口腔微生物组研究的荟萃分析可以提高疾病预测结果。

Meta-analysis of caries microbiome studies can improve upon disease prediction outcomes.

机构信息

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

R&D Innovation, Haleon, Weybridge, UK.

出版信息

APMIS. 2022 Dec;130(12):763-777. doi: 10.1111/apm.13272. Epub 2022 Sep 20.

Abstract

As one of the most prevalent infective diseases worldwide, it is crucial that we not only know the constituents of the oral microbiome in dental caries but also understand its functionality. Herein, we present a reproducible meta-analysis to effectively report the key components and the associated functional signature of the oral microbiome in dental caries. Publicly available sequencing data were downloaded from online repositories and subjected to a standardized analysis pipeline before analysis. Meta-analyses identified significant differences in alpha and beta diversities of carious microbiomes when compared to healthy ones. Additionally, machine learning and receiver operator characteristic analysis showed an ability to discriminate between healthy and disease microbiomes. We identified from importance values, as derived from random forest analyses, a group of genera, notably containing Selenomonas, Aggregatibacter, Actinomyces and Treponema, which can be predictive of dental caries. Finally, we propose the most appropriate study design for investigating the microbiome of dental caries by synthesizing the studies, which had the most accurate differentiation based on random forest modelling. In conclusion, we have developed a non-biased, reproducible pipeline, which can be applied to microbiome meta-analyses of multiple diseases, but importantly we have derived from our meta-analysis a key group of organisms that can be used to identify individuals at risk of developing dental caries based on oral microbiome inhabitants.

摘要

作为全球最普遍的传染病之一,我们不仅要了解龋齿患者口腔微生物组的组成成分,还要了解其功能,这一点至关重要。在此,我们提出了一种可重现的荟萃分析方法,以有效报告龋齿患者口腔微生物组的关键组成部分及其相关功能特征。从在线存储库下载公开可用的测序数据,并在进行分析之前对其进行标准化分析流程处理。荟萃分析表明,与健康人群相比,龋齿患者的口腔微生物组的α多样性和β多样性存在显著差异。此外,机器学习和接收者操作特征分析表明,其具有区分健康和疾病微生物组的能力。我们从随机森林分析的重要性值中确定了一组属,尤其是包含 Selenomonas、Aggregatibacter、Actinomyces 和 Treponema 的属,这些属可预测龋齿。最后,我们通过综合研究提出了调查龋齿微生物组的最合适研究设计,这些研究基于随机森林模型具有最准确的区分能力。总之,我们开发了一种无偏、可重现的分析流程,可应用于多种疾病的微生物组荟萃分析,但重要的是,我们从荟萃分析中得出了一组关键的生物体,可以根据口腔微生物组的居住者来识别有患龋齿风险的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b61/9825849/0faaa53ca23a/APM-130-763-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验