Suppr超能文献

社交网络上的贝叶斯证据积累

Bayesian Evidence Accumulation on Social Networks.

作者信息

Karamched Bhargav, Stolarczyk Simon, Kilpatrick Zachary P, Josić Krešimir

机构信息

Department of Mathematics, University of Houston, Houston, TX 77204.

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309.

出版信息

SIAM J Appl Dyn Syst. 2020;19(3):1884-1919. doi: 10.1137/19m1283793. Epub 2020 Aug 18.

Abstract

To make decisions we are guided by the evidence we collect and the opinions of friends and neighbors. How do we combine our private beliefs with information we obtain from our social network? To understand the strategies humans use to do so, it is useful to compare them to observers that optimally integrate all evidence. Here we derive network models of rational (Bayes optimal) agents who accumulate private measurements and observe the decisions of their neighbors to make an irreversible choice between two options. The resulting information exchange dynamics has interesting properties: When decision thresholds are asymmetric, the absence of a decision can be increasingly informative over time. In a recurrent network of two agents, the absence of a decision can lead to a sequence of belief updates akin to those in the literature on common knowledge. On the other hand, in larger networks a single decision can trigger a cascade of agreements and disagreements that depend on the private information agents have gathered. Our approach provides a bridge between social decision making models in the economics literature, which largely ignore the temporal dynamics of decisions, and the single-observer evidence accumulator models used widely in neuroscience and psychology.

摘要

我们依据收集到的证据以及朋友和邻居的意见来做决策。我们如何将自己的个人信念与从社交网络中获取的信息相结合呢?为了理解人类用于此的策略,将他们与能最优整合所有证据的观察者进行比较是很有用的。在这里,我们推导了理性(贝叶斯最优)主体的网络模型,这些主体积累个人测量值并观察邻居的决策,以便在两个选项之间做出不可逆转的选择。由此产生的信息交换动态具有有趣的特性:当决策阈值不对称时,随着时间的推移,未做出决策可能会越来越具有信息量。在由两个主体组成的循环网络中,未做出决策可能会导致一系列信念更新,类似于关于常识的文献中的那些更新。另一方面,在更大的网络中,单个决策可能会引发一系列取决于主体所收集的私人信息的同意和不同意。我们的方法在经济学文献中很大程度上忽略决策时间动态的社会决策模型与神经科学和心理学中广泛使用的单观察者证据积累模型之间架起了一座桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e49a/9432802/f1eec9dd28cc/nihms-1831016-f0001.jpg

相似文献

1
Bayesian Evidence Accumulation on Social Networks.社交网络上的贝叶斯证据积累
SIAM J Appl Dyn Syst. 2020;19(3):1884-1919. doi: 10.1137/19m1283793. Epub 2020 Aug 18.
3
Social Influences in Sequential Decision Making.序列决策中的社会影响
PLoS One. 2016 Jan 19;11(1):e0146536. doi: 10.1371/journal.pone.0146536. eCollection 2016.
4
Computational mate choice: theory and empirical evidence.计算性择偶:理论与实证证据
Behav Processes. 2012 Jun;90(2):261-77. doi: 10.1016/j.beproc.2012.02.010. Epub 2012 Mar 5.
5
Heterogeneity Improves Speed and Accuracy in Social Networks.异质性提高社交网络中的速度和准确性。
Phys Rev Lett. 2020 Nov 20;125(21):218302. doi: 10.1103/PhysRevLett.125.218302.
7
The Spread of Beliefs in Partially Modularized Communities.部分模块化社区中信仰的传播。
Perspect Psychol Sci. 2024 Mar;19(2):404-417. doi: 10.1177/17456916231198238. Epub 2023 Nov 29.
8
Optimizing sequential decisions in the drift-diffusion model.优化漂移扩散模型中的序列决策。
J Math Psychol. 2019 Feb;88:32-47. doi: 10.1016/j.jmp.2018.11.001. Epub 2018 Nov 29.

引用本文的文献

2
Impact of correlated information on pioneering decisions.相关信息对开拓性决策的影响。
Phys Rev Res. 2023 Sep;5(3). doi: 10.1103/physrevresearch.5.033020. Epub 2023 Jul 10.
3
Fast decisions reflect biases; slow decisions do not.快速决策反映偏见;缓慢决策则不然。
Phys Rev E. 2024 Aug;110(2-1):024305. doi: 10.1103/PhysRevE.110.024305.
6
A Cognitive Computational Approach to Social and Collective Decision-Making.认知计算方法在社会和集体决策中的应用。
Perspect Psychol Sci. 2024 Mar;19(2):538-551. doi: 10.1177/17456916231186964. Epub 2023 Sep 6.
8
Stochastic dynamics of social patch foraging decisions.社会斑块觅食决策的随机动力学
Phys Rev Res. 2022 Aug-Oct;4(3). doi: 10.1103/physrevresearch.4.033128. Epub 2022 Aug 15.
10
Heterogeneity Improves Speed and Accuracy in Social Networks.异质性提高社交网络中的速度和准确性。
Phys Rev Lett. 2020 Nov 20;125(21):218302. doi: 10.1103/PhysRevLett.125.218302.

本文引用的文献

2
Group decision-making is optimal in adolescence.群体决策在青春期最为理想。
Sci Rep. 2018 Oct 22;8(1):15565. doi: 10.1038/s41598-018-33557-x.
4
Evidence Accumulation and Change Rate Inference in Dynamic Environments.动态环境中的证据积累与变化率推断
Neural Comput. 2017 Jun;29(6):1561-1610. doi: 10.1162/NECO_a_00957. Epub 2017 Mar 23.
5
A Common Mechanism Underlying Food Choice and Social Decisions.食物选择和社会决策背后的共同机制。
PLoS Comput Biol. 2015 Oct 13;11(10):e1004371. doi: 10.1371/journal.pcbi.1004371. eCollection 2015 Oct.
9
The cost of accumulating evidence in perceptual decision making.在知觉决策中积累证据的成本。
J Neurosci. 2012 Mar 14;32(11):3612-28. doi: 10.1523/JNEUROSCI.4010-11.2012.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验