Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
Bioinformatics. 2022 Oct 31;38(21):4868-4877. doi: 10.1093/bioinformatics/btac599.
Cell-cell communications regulate internal cellular states, e.g. gene expression and cell functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs), which is also crucial. Nevertheless, the regulation of cell-to-cell expression variability of HVGs via cell-cell communications is still largely unexplored. The recent advent of spatial transcriptome methods has linked gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal those regulations. The existing computational methods extract genes with expression levels influenced by neighboring cell types. However, limitations remain in the quantitativeness and interpretability: they neither focus on HVGs nor consider the effects of multiple neighboring cell types.
Here, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the quantitative index of the cell-cell communications. Evaluation using simulated data showed our method accurately estimated the effects of multiple neighboring cell types on HVGs. Furthermore, applications to the two real datasets demonstrate that CCPLS can extract biologically interpretable insights from the inferred cell-cell communications.
The R package is available at https://github.com/bioinfo-tsukuba/CCPLS. The data are available at https://github.com/bioinfo-tsukuba/CCPLS_paper.
Supplementary data are available at Bioinformatics online.
细胞间通讯调节细胞内状态,例如基因表达和细胞功能,并在正常发育和疾病状态中发挥关键作用。此外,单细胞 RNA 测序方法揭示了高度可变基因(HVGs)的细胞间表达变异性,这也至关重要。然而,细胞间通讯对 HVGs 的细胞间表达变异性的调节在很大程度上仍未得到探索。最近出现的空间转录组学方法将基因表达谱与单细胞的空间背景联系起来,这为揭示这些调节提供了机会。现有的计算方法提取受邻近细胞类型表达水平影响的基因。然而,它们在定量性和可解释性方面仍然存在局限性:它们既不关注 HVGs,也不考虑多个邻近细胞类型的影响。
在这里,我们提出了 CCPLS(基于偏最小二乘回归建模的细胞间通讯分析),这是一种基于空间转录组数据识别细胞间通讯作为多个邻近细胞类型对 HVGs 的细胞间表达变异性影响的统计框架。对于每种细胞类型,CCPLS 执行 PLS 回归建模,并报告系数作为细胞间通讯的定量指标。使用模拟数据的评估表明,我们的方法可以准确估计多个邻近细胞类型对 HVGs 的影响。此外,对两个真实数据集的应用表明,CCPLS 可以从推断出的细胞间通讯中提取具有生物学可解释性的见解。
R 包可在 https://github.com/bioinfo-tsukuba/CCPLS 上获得。数据可在 https://github.com/bioinfo-tsukuba/CCPLS_paper 上获得。
补充数据可在 Bioinformatics 在线获得。