Suppr超能文献

一种使用光泵磁强计的 90 通道三轴脑磁图系统。

A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers.

机构信息

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.

QuSpin Inc., Louisville, Colorado, USA.

出版信息

Ann N Y Acad Sci. 2022 Nov;1517(1):107-124. doi: 10.1111/nyas.14890. Epub 2022 Sep 5.

Abstract

Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.

摘要

脑磁图(MEG)测量神经网络中电流产生的小磁场,提供大脑功能的非侵入性度量。MEG 已被确立为一种强大的神经科学和临床工具。然而,当前的仪器设备受到繁琐的低温场感应技术的限制。相比之下,使用光泵磁强计(OPM-MEG)的 MEG 采用小型、轻量级、非低温的传感器,提供更高灵敏度和空间分辨率的数据、自然扫描环境(包括参与者运动)以及对任何年龄段的适应性。然而,OPM-MEG 是新的,设计系统的最佳方法尚不清楚。在这里,我们构建了一种新型的 90 通道三轴 OPM-MEG 系统,并使用它来绘制自然书写任务期间的运动功能。结果表明,高精度磁场控制将背景场降低到约 200 pT,从而实现了参与者的自由运动。与传统(单轴)设计相比,我们的三轴阵列提供了两倍的总测量信号和更好的干扰抑制。我们将神经振荡活动映射到感觉运动网络,证明了左手和右手书写时运动网络活动和连接的显著差异。扫描之间的可重复性表明,我们可以以约 4 毫米的精度绘制电生理活动。总的来说,我们的研究介绍了一种新型的三轴 OPM-MEG 设计,并证实了其在高性能功能神经成像中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc3/9826099/c8fa329eca24/NYAS-1517-107-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验