Inaba Hiroshi, Sueki Yurina, Ichikawa Muneyoshi, Kabir Arif Md Rashedul, Iwasaki Takashi, Shigematsu Hideki, Kakugo Akira, Sada Kazuki, Tsukazaki Tomoya, Matsuura Kazunori
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan.
Sci Adv. 2022 Sep 9;8(36):eabq3817. doi: 10.1126/sciadv.abq3817. Epub 2022 Sep 7.
Microtubules play important roles in biological functions by forming superstructures, such as doublets and branched structures, in vivo. Despite the importance, it is challenging to construct these superstructures in vitro. Here, we designed a tetrameric fluorescent protein Azami-Green (AG) fused with His-tag and Tau-derived peptide (TP), TP-AG, to generate the superstructures. Main binding sites of TP-AG can be controlled to the inside and outside of microtubules by changing the polymerization conditions. The binding of TP-AG to the inside promoted microtubule formation and generated rigid and stable microtubules. The binding of TP-AG to the outside induced various microtubule superstructures, including doublets, multiplets, branched structures, and extremely long microtubules by recruiting tubulins to microtubules. Motile microtubule aster structures were also constructed by TP-AG. The generation of various microtubule superstructures by a single type of exogenous protein is a new concept for understanding the functions of microtubules and constructing microtubule-based nanomaterials.
微管通过在体内形成超结构(如双联体和分支结构)在生物功能中发挥重要作用。尽管其很重要,但在体外构建这些超结构具有挑战性。在此,我们设计了一种与His标签和源自微管蛋白的肽(TP)融合的四聚体荧光蛋白阿萨米绿(AG),即TP-AG,以生成超结构。通过改变聚合条件,TP-AG的主要结合位点可被控制在微管的内部和外部。TP-AG与内部的结合促进了微管形成并产生了刚性且稳定的微管。TP-AG与外部的结合通过将微管蛋白招募到微管上诱导了各种微管超结构,包括双联体、多联体、分支结构和极长的微管。TP-AG还构建了可移动的微管星状结构。通过单一类型的外源蛋白生成各种微管超结构是理解微管功能和构建基于微管的纳米材料的一个新概念。