Suppr超能文献

基于核糖体和拟核的空间分离的细菌亚细胞扩散的异质性。

Heterogeneity of Subcellular Diffusion in Bacteria Based on Spatial Segregation of Ribosomes and Nucleoids.

机构信息

Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.

出版信息

Microb Physiol. 2022;32(5-6):177-186. doi: 10.1159/000526846. Epub 2022 Sep 7.

Abstract

It has long become clear that in spite of generally lacking internal membrane systems, bacteria contain well-structured subcellular structures of usually filamentous proteins, and a preferred 3D arrangement of their chromosome(s). Some of these systems are set up by so-called cytoskeletal elements, or by polar landmark proteins, but the mechanism of specific localization is still unclear in most cases. Intriguingly, apart from such spatially organizing systems, the bacterial cytoplasm has unusual properties in terms of the diffusion of molecules, which varies between different sites within the cell. In many bacteria, chromosomes are compacted into centrally located nucleoids, being orderly folded as opposed to consisting of random coils of DNA. In these bacteria, there is a separation of transcription and translation, such that transcription by RNA polymerase occurs on the nucleoids, and translation takes place mostly at the cell poles and directly underneath the cell membrane, because 70S ribosomes accumulate at sites surrounding the nucleoids. Interestingly, accumulation of ribosomes appears to slow down diffusion of enzymes, noticeable for larger enzyme complexes, while nucleoids provide areas of confined motion for DNA-binding proteins, yet acceleration zones for non-DNA-binding proteins. Crowded regions at the cell poles set up zones of higher concentration of the translation machinery, shortening diffusion distances for rate-limiting translation factor/ribosome interactions, and of metabolic enzymes, possibly speeding up pathways containing low concentrations of metabolites. Thus, heterogeneous diffusion adds another layer of subcellular organization on top of cytoskeletal elements.

摘要

长期以来,人们已经清楚地认识到,尽管细菌通常缺乏内膜系统,但它们内部含有结构良好的亚细胞结构,通常由丝状蛋白组成,并且其染色体(多个)也具有优先的三维排列。这些系统中的一些是由所谓的细胞骨架元件或极性地标蛋白建立的,但在大多数情况下,特定定位的机制仍然不清楚。有趣的是,除了这些空间组织系统之外,细菌细胞质在分子扩散方面具有异常的特性,这在细胞内的不同位置之间有所不同。在许多细菌中,染色体被压缩到位于中央的核区,有序折叠,而不是由 DNA 的随机卷曲组成。在这些细菌中,转录和翻译是分开的,使得 RNA 聚合酶在核区进行转录,而翻译主要发生在细胞极和细胞膜下方,因为 70S 核糖体在核区周围的部位积累。有趣的是,核糖体的积累似乎会减缓酶的扩散,对于较大的酶复合物尤为明显,而核区为 DNA 结合蛋白提供了受限运动的区域,但为非 DNA 结合蛋白提供了加速区。细胞极的拥挤区域形成了翻译机器浓度较高的区域,缩短了限速翻译因子/核糖体相互作用的扩散距离,以及代谢酶的扩散距离,可能会加速包含低浓度代谢物的途径。因此,异质扩散在细胞骨架元件之上又增加了一层亚细胞组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b97/9827431/32e8ba65db20/mip-0032-0177-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验