Suppr超能文献

利用乳酸浓度轨迹对急性呼吸窘迫综合征合并脓毒症患者进行风险分层。

Risk stratification of patients with acute respiratory distress syndrome complicated with sepsis using lactate trajectories.

机构信息

The Graduate School, Tianjin Medical University, Tianjin, China.

Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.

出版信息

BMC Pulm Med. 2022 Sep 7;22(1):339. doi: 10.1186/s12890-022-02132-6.

Abstract

BACKGROUND

No consensus has been reached on an optimal blood lactate evaluation system although several approaches have been reported in the literature in recent years. A group-based trajectory modeling (GBTM) method could better stratify patients with acute respiratory distress syndrome (ARDS) complicated with sepsis in the intensive care unit (ICU).

PATIENTS AND METHODS

760 patients from the comprehensive ICU of Tianjin Medical University General Hospital with ARDS complicated with sepsis were eligible for analysis. Serial serum lactate levels were measured within 48 h of admission. In addition to the GBTM lactate groups, the initial lactate, peak lactate level, the area under the curve of serial lactate (lactate AUC), and lactate clearance were also considered for comparison. The short- and long-term outcomes were the 30- and 90-day mortality, respectively.

RESULTS

Three lactate groups were identified based on GBTM, with group 3 exhibiting the worse short- [hazard ratio (HR) for 30-day mortality: 2.96, 95% confidence interval (CI) 1.79-4.87, P < 0.001] and long term (HR for 90-day mortality: 3.49, 95% CI 2.06-5.89, P < 0.001) outcomes followed by group 2 (HR for 30-day mortality: 2.05, 95% CI 1.48-2.84, P < 0.001 and HR for 90-day mortality: 1.99, 95% CI 1.48-2.67, P < 0.001). GBTM lactate groups exhibited significantly improved diagnostic performance of initial lactate + SOFA scores/APACHE II scores models. Based on the multivariable fractional polynomial interaction (MFPI) approach, GBTM lactate groups could better differentiate high-risk patients than the initial lactate groups in short- and long-term outcomes.

CONCLUSIONS

To the best of our knowledge, this is the first report that GBTM-based serial blood lactate evaluations significantly improve the diagnostic capacity of traditional critical care evaluation systems and bring many advantages over previously documented lactate evaluation systems.

摘要

背景

尽管近年来文献中报道了几种方法,但尚未达成关于最佳血乳酸评估系统的共识。基于群组的轨迹建模(GBTM)方法可以更好地区分重症监护病房(ICU)中合并脓毒症的急性呼吸窘迫综合征(ARDS)患者。

患者和方法

符合纳入标准的是来自天津医科大学总医院综合 ICU 的 760 名 ARDS 合并脓毒症患者。在入院后 48 小时内测量连续的血清乳酸水平。除了 GBTM 乳酸组外,还考虑了初始乳酸、峰值乳酸水平、连续乳酸的曲线下面积(乳酸 AUC)和乳酸清除率进行比较。短期和长期结局分别为 30 天和 90 天的死亡率。

结果

根据 GBTM 确定了 3 个乳酸组,其中第 3 组的短期[30 天死亡率的风险比(HR):2.96,95%置信区间(CI)为 1.79-4.87,P<0.001]和长期[90 天死亡率的 HR:3.49,95%CI 为 2.06-5.89,P<0.001]结局最差,其次是第 2 组[30 天死亡率的 HR:2.05,95%CI 为 1.48-2.84,P<0.001 和 90 天死亡率的 HR:1.99,95%CI 为 1.48-2.67,P<0.001]。GBTM 乳酸组显著改善了初始乳酸+SOFA 评分/APACHE II 评分模型的诊断性能。基于多变量分数多项式交互(MFPI)方法,GBTM 乳酸组在短期和长期结局方面比初始乳酸组能够更好地区分高危患者。

结论

据我们所知,这是第一项报告,基于 GBTM 的连续血乳酸评估显著提高了传统重症监护评估系统的诊断能力,并带来了许多优于以前记录的乳酸评估系统的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cbc/9454183/813c53d9de67/12890_2022_2132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验