Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France.
IFV, UMT Seven, F-33140 Villenave d'Ornon, France.
Int J Mol Sci. 2022 Sep 2;23(17):10012. doi: 10.3390/ijms231710012.
Downy mildew is a highly destructive disease of grapevine. Currently, monitoring for its symptoms is time-consuming and requires specialist staff. Therefore, an automated non-destructive method to detect the pathogen before the visible symptoms appear would be beneficial for early targeted treatments. The aim of this study was to detect the disease early in a controlled environment, and to monitor the disease severity evolution in time and space. We used a hyperspectral image database following the development from 0 to 9 days post inoculation (dpi) of three strains of inoculated on grapevine leaves and developed an automatic detection tool based on a Support Vector Machine (SVM) classifier. The SVM obtained promising validation average accuracy scores of 0.96, a test accuracy score of 0.99, and it did not output false positives on the control leaves and detected downy mildew at 2 dpi, 2 days before the clear onset of visual symptoms at 4 dpi. Moreover, the disease area detected over time was higher than that when visually assessed, providing a better evaluation of disease severity. To our knowledge, this is the first study using hyperspectral imaging to automatically detect and show the spatial distribution of downy mildew on grapevine leaves early over time.
霜霉病是一种对葡萄树具有高度破坏性的疾病。目前,对其症状的监测既耗时又需要专业人员。因此,在可见症状出现之前,采用一种自动的、无损的方法来检测病原体,将有利于早期进行有针对性的治疗。本研究的目的是在受控环境中尽早检测到这种疾病,并及时监测疾病在时间和空间上的严重程度变化。我们使用了一个高光谱图像数据库,该数据库记录了三种接种在葡萄叶上的菌株从接种后 0 到 9 天(dpi)的发展情况,并基于支持向量机(SVM)分类器开发了一种自动检测工具。SVM 获得了有希望的验证平均准确率 0.96、测试准确率 0.99 的结果,并且在对照叶片上没有输出假阳性,在 4dpi 出现明显可见症状的前两天(2dpi)就检测到了霜霉病。此外,随着时间的推移,检测到的病害面积高于肉眼评估的面积,从而可以更好地评估病害的严重程度。据我们所知,这是首次使用高光谱成像技术自动检测和显示葡萄叶上霜霉病随时间的早期和空间分布的研究。